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FOREWORD 

This report  w a s  prepared i n  compliance with NASA-JPL Contract 

NAS7-720 en t i t  led "Reactive Stream Separation Photography" . 
J. H. Rupe, Je t  Propulsion Laboratory, w a s  Project  Manager. The 

Roclcetdyne Program Manager w a s  M r .  T. A. Coultas. The technical 

approach of the program was guided and directed by Mr. S. D. Clapp, 

and D r .  D. T. Campbell. 

ABSTRACT 

High-speed photographic techniques were used t o  study impinging 

streams of N204/N2H4; N204/50-50, IRFNA/TJDMH, and C1F5/N2H4 

propellants i n  an experimental investigation of reactive stream 

separation. The high-resolution color motion pictures obtained 

show the  detai led behavior of the l iqu id  streams, spray fan, and 

individual droplets within the combustion zone. It w a s  found tha t  

when react ive streams meet and form a spray fan, they may be 

cycl ical ly  and vigorously blown apart  by a disturbance which could 

be a detonation o r  explosive deflagration, and then reform. This 

phenomenon was found t o  occur with N204/N2H4, N204/50-50 and IRFNA/ 

UDMH, di f fe r ing  i n  average explosion strength according t o  the 

propellant combination. Cyclic blowapart frequencies and magnitudes 

were determined a t  var iable  impinging stream dynamic pressure ra t io .  

and j e t  diameters. 

velocity and point of i n i t i a t i o n  of the disturbance. With the 

propellants C1F /N H no cycl ic  blowapart ("popping") w a s  

encountered, but ra ther  a continuous stream separation w a s  observed. 

By manipulation of o r i f i c e  s i zes  and dynamic pressure r a t i o  these 

l a t t e r  propellants were made t o  form a mixed, o r  non-separated 

spray fan. 

Streak movies were a l so  taken t o  determine the 

5 2 4  
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SUMMARY 

The r e su l t s  of t h i s  study show conclusively tha t  the  blowapart processes 

are cyc l ica l  and sequentially consis ts  of: (1) propellant "mixing" i n  a 

spray fan, (2) apparent detonation o r  explosive deflagration of the spray 

immediately downstream of stream impingement, (3) violent  separation 

(blowapart) of the individual propellant streams, and (4) recovery of the  

stream impingement. A s  intended, the program test conditions spanned 

operation from "mixed" t o  s ign i f icant ly  "separated" conditions. 

presence of burning spray droplets w a s  c lear ly  shown i n  a l l  regions 

photographed. 

The 

The cyc l ic  blowapart process described i n  these r e su l t s  appears more.likely 

t o  be responsible f o r  "reactive s t r e a m  separation" than any quasi-steady 

lamination within the spray fan f o r  hydrazine NTO propellant types. The 

la t ter  process, as inferred from s t i l l  photographs, has been generally 

accepted by previous investigators.  Some suggestion of color lamination 

along the  edge of the spray fan w a s  seen ( i n  the present program) between 

incidence of blowapart. The scale of t h i s  lamination, i f  real ,  w a s  

re la t ive ly  small and i ts  quant i ta t ive s ignif icance is questionable. On the 

other hand, f o r  the C1F /N H combination, a d i s t i n c t  continuous separation 

w a s  observed. This phenomenon w a s  observed with both 0.173-inch and 

0,030-inch o r i f i c e  diameters, but w a s  eliminated a t  the smaller o r i f i c e  

s i z e  by operation a t  high (-1.6) dynamic pressure ra t io .  

5 2 4  

The experimental procedures used i n  the  program provided an excellent 

description of t he  spray f i e l d  charac te r i s t ics  and afford an established 

experimental technique f o r  fur ther  s tud ies  of the "blowapart" phenomenon. 

The propellant combinations used were N204/N2H4, N204/50-50 (N2H4-UDMH) , 
IRFNA/N2H4 and C1F5/N2H4. 

graphically describe the impingement process under both "mixing" and 

11 stream separation" conditions. 

The primary program object ive w a s  t o  photo- 

Secondary goals included documentation 

1 



of the presence of propellant spray droplets i n  selected regions f o r  

comparison with exis t ing holographic data and ident i f ica t ion  of indi- 

vidual droplet  composition by color. I n  addition t o  propellant combina- 

t ion,  test var iables  included chamber pressure, j e t  dynamic pressure 

r a t io ,  o r i f i c e  diameters, in jec t ion  ve loc i t ies ,  and impingement angle. 

Single element unlike-doublet injectors  with o r i f i c e  diameters of 0.030, 

0.072, and 0.173 inch w e r e  tes ted with varying in jec t ion  ve loc i t ies  

with the N 0 /N H propellant combination. Using a 0.173-inch o r i f i ce ,  

tests were conducted a t  atmospheric and -200 ps ia  chamber pressure using 

N204/50-50 propellants. One test series w a s  conducted a t  atmospheric 

pressure with C1F /N H propellants using 0.030 and 0.173-inch o r i f i c e  5 2 4  
injectors .  For the 0.030-inch tests the dynamic pressure r a t i o  of the  

impinging jets w a s  varied. 

study w e r e  a t  o r  near a unity dynamic pressure ra t io .  

avoid uncertaint ies  due t o  var iab le  j e t  hydraulic e f fec ts ,  smooth, long 

(100 L/D) o r i f i c e  in jec t ion  tubes w e r e  used f o r  a l l  tests. Both s t i l l  

and high-speed camera coverage were employed with spec ia l  l igh t ing  and 

photographic techniques designed f o r  observation of the j e t  and spray 

behavior within the  combustion f ie ld .  

camera w a s  used t o  measure the speed and point of i n i t i a t i o n  of the 

disturbance. 

2 4 ' 2 4  

Most of the other  tests conducted i n  t h i s  

I n  order t o  

A special ly  modified s t reak  

Several summary descr ipt ive comments may be made about the cycl ic  dis-  

turbance observed: (1) with the exception of C1F /N H a l l  propellants 
evaluated experienced some degree of cyc l ic  blowapart; (2) the  strong and 

moderate s t rength explosions, which v is ib ly  consume a l l  pa r t s  of the spray, 

originated very close t o  the impingement point and seemed t o  propagate 

i n i t i a l l y  with equal force i n  a l l  direct ions;  (3) a weaker type blowapart 
originated approximately 1-inch downstream of the impingement point,  

appearing la rge ly  as a puff of dense oxidizer vapor leaving the spray- 

f i e ld ;  (4) audible popping sounds w e r e  heard only with the  strong class 

of blowapart; (5) the  disturbances do not occur a t  regular o r  periodic 

5 2 4' 
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in te rva ls ,  t ha t  i s ,  recorded frequencies are t i m e  averaged values; 

(6) as observed with N204/50-50, there  w a s  no s igni f icant  change i n  the 

type or  frequency of cycl ic  blowapart upon operation a t  elevated pressure 

(200 psia) .  

3 



INTRODUCTION 

Current injector  design technology f o r  unlike impinging l iqu id  propellant 

rockets i s  predominantly based upon knowledge of propellant mixing acquired 

from cold-flow t e s t s  with propellant simulants. To the extent tha t  r e a l  

propellants behave i n  the same manner as  the nonreactive l iquids,  ra t ional  

design may be accomplished i n  a manner which provides both e f f i c i en t  com- 

bustion and compatibility w i t h  the thrust  chamber and nozzle materials. 

first reported (1959) by Elverurn and Standhammer a t  J P L  (Ref. l), however, 

impinging hypergolic l iqu id  streams may, under cer ta in  conditions, tend t o  

separate or be blown apart  ra ther  than achieving the intended degree of 

mixing. 

pellant system. 

Riebling, e t  a l .  ( R e f .  2 through 7), of inject ing impinging jets or  sheets 

of N204 and N2H4 i n  baffled, o r  divided chambers, confirmed Elverum's photo- 

graphic indication of fuel/oxidizer s t r a t i f i ca t ion .  By auxi l iary inject ion 

of fue l  and oxidizer downstream of the chamber divider, performance changes 

could be used t o  monitor the presence of unmixed propellants from the main 

inject ion element. 

dependent upon o r i f i ce  s i z e s ;  mixing was obtained with the smaller streams; 

but separation occurred with jets larger  than about 0.040 t o  0.060 inch. 

As 

These e f fec ts  were observed, specifically,  w i t h  the N204/N2H4 pro- 

Continued J P L  experimental investigation by Johnson, 

This work showed tha t  the incidence of separation was 

Since 1966, continued and expanded in t e re s t  i n  "blowapart" o r  "reactive 

stream separation," as it has a l te rna te ly  been called, is  evidenced by 

both in-house and contractual work by NASA-JPL, NASA-Lewis Research Center, 

and by the A i r  Force (AFRPL) . 
volved photography. 

N204/N2H4 in jec tor  ( R e f .  8), several  investigations by Dynamic Science 

( R e f .  9 and 10) and in-house work a t  Rocketdyne ( R e f .  11). 

nate methods f o r  study of reactive stream separation include use by Hauseman 

(Ref. 12) of a probe t o  obtain samples f o r  an on-line mass spectrometer. 

Most of the experimental methods have in.. 

These include Burrow's study of an impinging-quadlet 

Current alter- 

4 



Kushida and Houseman (Ref. 14) made a f i r s t  attempt t o  develop an ana ly t ica l  

model t o  predict  t ha t  separation would or  would not occur. 

included two regimes, depending upon the pressure of the environment. A t  

low t o  moderate pressures, separation w a s  presumed t o  r e su l t  from l iquid/  

l iqu id  i n t e r f a c i a l  react ion and w a s  thus dependent upon a "residence t i m e "  

as indexed by the j e t  diameter divided by the inject ion veloci ty  (D/V) and 

upon the propellant inject ion temperature. A t  some higher pressure, the  

value of which depended upon D/V, a gas phase reaction w a s  presumed t o  

sus ta in  the l iqu id  stream separation. Lamer, Breen, e t  a1 (Ref. 9) 

obtained da ta  which seemed t o  ver i fy  the s ignif icance of D/V and propel- 

l an t  temperature, and fur ther  suggested tha t  pressure e f f ec t s  w e r e  of 

l imited importance. Their semi -empi r i ca l  model, developed somewhat dif-  

ferent ly  from tha t  of Kushida, emphasized the strong ef fec t  of l iqu id  

temperatures through an Arhenius reaction rate expression. Furthermore, 

t he i r  performance data with a micro-rocket, using four unlike doublets t o  

in j ec t  N 0 /N H showed a dramatic, almost discontinuous decrease i n  per- 

formance as the propellant temperature w a s  raised, which w a s  a t t r ibu ted  

t o  the  onset of blowapart. Thus, i t  appeared tha t ,  a t  least with unlike 

doublets using N 0 /N H zones of "separation" and 'of "mixing" had been 

mapped out. Unfortunately, however, as reported by Zung (Ref. 10) i n  

.September 1969, much of the Ref. 9 da ta  is now considered questionable due 

t o  oxidizer boi l ing as i t  w a s  in jected,  and the propellant react ion with 

l u c i t e  windows of the  experimental apparatus. Boiling probably presented 

liquid-liquid impingement and photographic in te rpre ta t ion  w a s  severely 

impaired by the l u c i t e  burning. 

(Ref. 10) suggests t ha t  separation i s  more prevalent a t  elevated pressures 

and also tha t  propellant temperatures play an insignif icant  role.  This 

conclusion i s  a l so  questionable s ince the dynamic pressure r a t i o  did not 

remain constant . 

This model 

2 4  2 4  

2 4  2 4 '  

More recent work by Dynamic Science 

I n  summary, by the summer of 1969, blowapart w a s  widely recognized as a 

phenomenon which should be characterized f o r  the in jec tor  designer. How- 

ever, design and operating conditions conducive t o  separation had not been 

adequately delineated, even f o r  the much-studied N 0 /N H system. Data 2 4  2 4  
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of N,O 

been demonstrated which could provide uncontroversial data  on separation. 

The physical nature of the separation process, when it d i d  occur, w a s  

generally presumed t o  involve a quasi-steady lamination of the spray fans 

with f u e l  on one s ide  and oxidizer on the other. 

with other hydrazine-type fue l s  w a s  sparse. Techniques had not ye t  L 4  

In  Campbell's investigation, extremely detailed color photographs had 

been obtained of atmospheric pressure f i r ings  of N204 and 50% N2H4-50$ U W .  
Individual burning f u e l  and oxidizer droplets w e r e  not only discernible 

but could be distinguished by t h e i r  color. 

be distinguished on the  edge of the spray fan. 

propellants w a s  obvious f o r  the  limited number of t e s t  conditions. 

present study 

same photographic techniques t o  several  hypergolic propellant combustions 

under conditions where (1) mixing occurs, and (2 )  where separation ( o r  

blowapart) took place. 

existence of a f i e l d  of spray droplets i n  the combustion zone downstream 

of a large unlike-doublet injector  which was subject t o  blowapart. Previous 

photographic studies i n  open a i r  tests with N204/50$ N2H4-50$ UIMH ( R e f .  15)  
had f a i l e d t o  reveal droplets w i t h  such an injector .  

Fuel and oxidizer could a l so  

Good intermixing of the 

The 

w a s  undertaken with the primary a i m  of applying these 

As a secondary goal, it was desired t o  ver i fy  the  

Following completion of the i n i t i a l  phase of the  subject work, an Interim 
Report (R-8110) was published which described a d i s t inc t  cyclic type of 

blowapart with N204/N2H4. 

toward determining whether t h i s  phenomenon occurred with other hypergolic 

l iqu id  propellant combinations and toward ascertaining the ef fec t  of operat- 

ing pressure. 

inject ion veloci t ies  and jet  dynamic pressure ra t ios  were varied. 

report  covers a l l  phases of the subject program including the r e su l t s  

contained i n  R-8110. 

The subsequent work i n  t h i s  program was directed 

Selected tests were a l so  planned i n  which o r i f i ce  sizes, 

This 



It should be noted tha t  t h i s  report covers a two-year period and since 

the publication of the Interim Report other investigators including 

Houseman ( R e f .  16 ) and Clayton (Ref. 17 ) have published experimental 

resu l t s  re la t ing cyclic (pop) ra tes  t o  various injection, and propellant 

operating conditions. 

t o  our resu l t s  where appropriate. 

The resu l t s  from these l a t t e r  studies a r e  compared 
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EXPERIMENTAL APPARATUS, FACILITIES, AND F’ROCEDUFU2S 

The primary objective of the program w a s  t o  photographically observe i m -  

pinging NTO/hydrazine streams under conditions where they mix and under 

conditions where stream separation occurs. Additionally, photographic 

documentation of propellant droplets i n  the  spray f ie ld  was desired. 

The experimental approach employed t o  obtain these photographs included 

both s t i l l  and motion picture f i l m  coverage of in jec tor  elements under 

hot f i re  conditions. Various camera se t t ings  and l ight ing adjustments 

were used t o  obtain the desired results.  

phase phenomena was sought, combinations of backlighting, l i gh t  f i l t e r ing ,  

and film exposure were selected t o  minimize the flame l igh t  and t o  sil- 

houette the jets and spray. Color contrast  between individual propellant 

streams and spray was a l so  sought fo r  a i d  i n  distinguishing between fie1 

and oxidizer i n  the spray fan. 

Because coverage of condensed 

A description of the experimental apparatus and procedures required t o  

f u l f i l l  the program objectives is  presented i n  the following sections. 

APPARATUS 

Experimental hardware f o r  the  program included a series of bipropellant- 

type injectors  and a combustion chamber w i t h  photographic viewing ports. 

Injector  Design 

Criter ia  f o r  injector  design was based on the  attainment of a s e t  of 

injectors  which would permit operation under conditions ranging from those 

i n  which good propellant mixing occurs t o  those which resu l t  i n  stream 

separation. 

velocity (D/V) ,which represents an index of re la t ive  contact residence 

t i m e  between impinging streams, had been previously correlated w i t h  the 

presence or  absence of stream separation. 

contact times, which, i n  turn, have been associated w i t h  stream separation. 

~n injector  design parameter, o r i f i ce  diameter/injection 

Large D/V values imply long 
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Conversely, small D/V values represent short  contact times, which a re  

generally considered conducive t o  stream mixing. 

was used t o  design in jec tor  elements f o r  the subject study. 

The D/V parameter 

Three injector  configurations were selected. Design parameters f o r  the 

injectors  a r e  l is ted i n  Table I. 

i s  shown i n  Figs. 1 and 2 . All injectors  were single-element, unlike- 

doublet, impinging-stream-type configurations having equal diameter f u e l  

and oxidizer or i f ices .  

45 or  60 degrees. 

which permitted evaluation of a large D/V range. 

f o r  the se r i e s  of injectors  permit spanning of the rnix/separate combustion 

t rans i t ion  a s  defined i n  previous studies*, R e f .  9. 

A schematic diagram of a typical  setup 

The impinging stream included angle was e i the r  

The o r i f i ce  diameters were 0.030, 0.072, and 0.173-inchY 

These design conditions 

The or i f ices  f o r  the three injector  configurations were formed by smooth 

s ta inless-s teel  tubes w i t h  L/D values of 100. 

employed t o  eliminate uncertainties with regard t o  hydraulic e f fec ts  by 

providing f u l l y  developed turbulent flow and uniform, well-formed jets. 

The o r i f i ce  tubes were attached t o  an aluminum block w i t h  swedge-lock 

f i t t i ngs .  

swedge-lock arrangement allowed each tube t o  be s e t  a t  the  free stream 

l iquid je t  length t o  the impingement point of f ive  t i m e s  the j e t  diameter. 

Large o r i f i ce  L/D were 

The block served as a common mount f o r  a l l  o r i f i ce  pairs.  The 

A l l  elements were i n i t i a l l y  cold-flowed with water t o  ver i fy  impingement 

alignment. 

*Although the Ref. 9 data i s  now under question, it was concluded tha t  
use of the three indicated o r i f i ce  s i z e s  together w i t h  pressure th ro t t l i ng  
allowed a comfortable margin f o r  operating i n  both "mix" and "separate" 
regions. 

9 



TABLE I 

EXMMARY OF DESIRED INJECTOR CONDITIONS 

where: 

= Free stream jet length to the impingent point Lfs 
D = Orifice jet diameter 

8 = Impingement angle 

0 = Oxidizer 
f = Fuel 

j 
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Mount Plate 

Figure 1. Schematic of 0.173 o r  0.072 Inch Orifice 
Configuration Single Element Injector. 
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Figure 2. 

-T Stainless Steel 
Mount Plate 

Schematic of 0.030 or 0.026 Inch 
Orifice Configuration Single Element 
Injector. 
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Water flow cal ibrat ions of each o r i f i c e  s ize  were a l so  conducted t o  deter- 

mine o r i f i c e  discharge coeff ic ient .  Orifice discharge coeff ic ients  f o r  the 

O.O3O-, 0.072-, and 0.173-inch o r i f i c e  in jec tors  were 0.453, 0.606, and 

0.596, respectively. 

Windowed Chamber 

Reactive stream separation t e s t s  were a l so  conducted i n  a variable pressure 

chamber wherein the ambient pressure i s  controlled by inject ion of gaseous 

nitrogen. 

of a s ing le  element reacting spray. 

shown i n  Fig. The chamber consists of a cyl indrical  s t e e l  s h e l l  (18- 
inches i n  diameter by 24-inches i n  length) w i t h  Plexiglas view windows on 

each of two s ides  (one f o r  camera view and one f o r  backlighting) and an 

in j ec to r  mount p l a t e  and nozzle plate  a t  respective ends of the chamber. 

The chamber i s  pre-pressurized by gaseous nitrogen introduced through an 

annular r ing  of o r i f i ce s  i n  the in jec tor  mount plate .  The gaseous n i t ro-  

gen o r i f i ce s  encircle  the  in j ec to r  t o  contain the injected spray thereby 

reducing spray impingement on the view windows. Additionally, separate 

gaseous nitrogen window purges, introduced through o r i f i ce s  located around 

the window periphery and directed t o  impinge on the window, are employed 

t o  fur ther  i nh ib i t  spray impingement on the window from occluding the camera 

view of the reacting spray. 

The chamber has transparent sides t o  allow v isua l  observation 

A schematic drawing of the chamber is  

3. 

TEST FACILITY 

The experimental hot f i r i n g s  were conducted a t  the Propellant Ehgineering 

(PEL) and the  Combustion and Heat Transfer (CHTL) laboratories of the 

Santa Susana Field T e s t  S i te .  

Schematic flow diagrams of the overal l  test stand a t  PEL are shown i n  

Figs. 4 through 6 ,  respectively. These include schematics of the NTO 
tankage and supply, and hydrazine tankage and supply systems. T e s t  
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O P T I C A L  SYSTEMS 
AND PHOTOGRAPH I C  
EQU I PMENT 

P I T  1 ,  PEL 

- 
BLOCKHOUSE 
OBSERVATION W I N D W  

Figure 4. Overall Blowapart Fac i l i ty  Schematic 
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equipment includes propellant run tanks, propellant feed system plumbing 

and an enclasure mount f o r  the injector.  A l l  t e s t s  at t h i s  f a c i l i t y  were 

conducted with the  mT0/hydrazine propellant combination. 

The N H system consists of a 12.0 gallon, 2100-psig rat ing s ta inless-  

s t e e l  tank w i t h  associated pressurization, vent, and out le t  controls and 

valves. 

Tubing connecting the N2H4 tank shutoff valve and tank main valve was 

1/2-inch diameter by 0.049-inch wall seamless 321 s ta in less  s t ee l .  

N2H4 main valve was a 1/2-inch (Model 9420) Annin. 

2 4  

The N2H4 tank shutoff valve was a l/2-inch Annin (Model 4520). 

The 

The N 0 

tank with i t s  separate pressurization, vent, and out le t  controls and 

valves. 

(Model 3420) shutoff, a 1/2-inch Vacco (Model 403) prevalve, and a lL2-inch 

(Model 9420) Annin main valve. 

diameter by 0.049-inch wall seamless 321 s ta inless-s teel  tubing. 

quarter-inch Marotta purge valves wi th  check valves were teed in to  the main 

feed l ines  downstream.of each main valve. 

system consists of a 13-gallon, 2000-psig rat ing s ta inless-s teel  2 4  

The nitrogen tetroxide system had three valves, a 1/2-inch Annin 

The N204 propellant l i n e  was mainly 1/2-inch 

One- 

Early i n  the program ef for t ,  it became evident t ha t  temperature condi- 

t ioning of the oxidizer w a s  required t o  prevent f lash vaporization of the 

oxidizer stream and thereby improve oxidizer stream collimation. Accord- 

ingly, an ice-cooled temperature bath was ins ta l led  i n  the oxidizer l i n e  

upstream of the  main valve. 

f u e l  l ine  t o  provide approximately equal inject ion temperatures f o r  each 

propellant. 

A similar i ce  bath w a s  a l s o  ins ta l led  i n  the 

The CHTL f a c i l i t y  is  shown i n  Fig. 7 .  Basically it consists of three 

l iqu id  propellant storage and delivery systems, separate heat exchangers 

f o r  temperature conditioning of each propellant. 
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Propellant Systems 

Two oxidizer systems and one f i e 1  system ( r e fe r  t o  Fig. 7 )were provided 

t o  accommodate the several  propellant combinations planned f o r  study i n  

Task A-1. 

from a 5OOO-psi, 30-gallon run tank. The other delivers chlorine penta- 

f luoride (CPF) from a 5OOO-psi, 100-gallon run tank. The fue l  system 

supplies the various propellants (N2Hk, UDMH, 50-50) from a 21OO-psi, 

12-gallon tank. 

controlled tes t  operations. 

NTO/IWNA system, 2586-psi f o r  the CPF system and 1000-psi f o r  the fue l  

system. 

One of the oxidizer systems w i l l  supply e i the r  NTO o r  IRFMA 

Each system is provided w i t h  appropriate valves f o r  safe, 

Pressure reliefs a re  s e t  a t  1500-psi f o r  the 

Propellant conditioning i s  necessary t o  assure single-phase l iqu id  flow 

from the in jec tor  elements. 

ditioning consist of 18-foot co i l s  of 1/2-inch s ta in less  s t e e l  tubing 

immersed i n  5-gallon containers. 

fed through propellant l i ne  jackets down t o  the injector  element. 

water i s  used t o  c'ool the NTO, IRFNA and hydrazine fue ls  t o  approximately 

40°F. The CPF i s  chi l led below 0°F by a trichloroethylene/dry ice  slush. 

The heat exchangers used f o r  propellant con- 

In  addition, the  ch i l led  coolant is  pump- 

Ice 

System instrumentation is  basic and uncomplicated since the bulk of the 

experimental resu l t s  come from photographic coverage. Tank pressure in- 

strumentation is  used t o  set the run conditions. Turbine flowmeters 

monitor the propellant flowrates. Iron-constantan thermocouples monitor 

the  coolant bath temperatures and the propellant l i n e  temperature i n  the 

jacketed sections. 

pel lant  surge and flowrate dependence on downstream transients  ( e  .g., 

blowapart a t  in jec tor  face). 

Cavitating venturis a r e  provided t o  eliminate pro- 

T e s t  Procedures 

The test procedure f o r  a l l  hot f i r i n g  was essent ia l ly  the same. In i t i a l ly ,  

a chilldown period was a l l o t t e d  t o  condition the propellant i n  the i c e  bath 
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containers. 

camera equipment was positioned fo r  the planned t e s t .  

the propellant main valves were e l ec t r i ca l ly  connected and t h e  test area 

cleared. 

During the propellant temperature conditioning period, 

Subsequently, 

An automatic timer, Eagle Model HM-7 w a s  used t o  actuate the  propellant 

main valves and camera equipment f o r  the tests. 

consisted of (1) pressurization of the propellant tanks, and (2 )  i n i t i a -  

t ion  of the t e s t  using the automatic timer. 

test, propellant was cleared from the propellant l ines  and injector  using 

manually actuated nitrogen gas purges. 

removal of the main valve e l ec t r i ca l  connections and opening of the test 

area for  personnel. 

The hot-fir ing sequence 

After completion of the 

The t e s t  f i r i n g  was completed with 

PHOTOGFWHIC APPARATUS AND TECHNIQUES 

S t i l l  Photography: 

Figure 8 is  a schematic of t he  opt ical  system i n i t i a l l y  used f o r  color 

photography of the  spray f ie ld .  

Single Light Source Apparatus 

The l igh t  from an EG&G type FX-11 Xenon f lash  l a m p  i s  focused by a Fresnel 

lens (L1) through a 4-inch by &-inch by 4-inch spray volume. The trans- 

mitted l i gh t  i s  then directed by three mirrors (Ml, %, and M ) and re- 3 
3 focused by Fresnel lens 5 onto a ground glass screen. 

images the ground glass screen onto the  camera lens. 

screen serves as  a l i g h t  diffuser  and provides a more uniformly illumin- 

a ted background a t  L 

using a beam s p l i t t e r ,  which would r e f l ec t  approximately 60% of the l i gh t  

t o  provide bottom illumination of the spray. 

Fresnel lens L 

The ground glass 

which the  camera views. Provision was made f o r  3' 

With t h i s  system, the spray can be simultaneously illuminated from top and 

bottom and rear  using a single f l a sh  lamp. 

s i lhouet te  against the background of lens L 

illumination i s  provided t o  bring out the color contrast  between propellants. 

"he camera v i e w s  the  spray i n  
while the top and bottom 3' 
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The optics a re  protected from the propellants by a four-sided plexiglass 

box measuring 2-feet-square on a side. 

replaceable glass  or  plexiglass plates a re  attached inside each of i t s  

four sides. 

To keep the box transparent, 

The Xenon f lash  lamp is  driven by an EG&G Model 501 high-speed strobscope 

power supply which can f lash  the lamp up t o  6000 times per second. For 

use with the s t i l l  camera, the strobe lamp system is f i r e d  fo r  a s ingle  

f lash by the  f lash synchronization switch on the camera shutter.  

The FX-11 Xenon f lash  lamp has the highest radiance and energy rat ing of 

any of several  f lash  lamp types compatible with the Model 501 power supply. 

The input energy per f lash  can be set a t  0.32, 0.64, and 1.28 joules, which 

yield manufacturers rated l i gh t  outputs per f lash  of 0.7, 2.0, and 4.0 

mill i joules per steradian, respectively. The respective f lash  durations 

were measured t o  be approximately 1, 2, and 3 microseconds. 

The i n i t i a l  photographic work was carr ied out using the  aforementioned 

opt ical  system and a s t i l l  camera with a 4-inch by 5-inch polaroid.fi lm 

pack. 

permits immediate examination of the r e su l t s  of a run. 
once sa t i s fac tory  photographic resu l t s  were obtained with Polaroid film, 

the photographs would then be taken with a fas te r ,  higher resolution fi lm 

such as Ektachrome S ,  Ektachrome B, or Ektachrome D. 

Color Polaroid fi lm was used, because the 1-minute development time 
It w a s  planned t h a t  

The first series of tes t  runs were made using a var ie ty  of camera filters 

t o  find the f i l t e r  t ha t  did the best  job of f i l t e r i n g  out the flame l igh t  

while a t  the same time providing maximum color contrast  i n  the propellants. 

Test runs were made using Kodak Wratten f i l t e r  types 30, 31, 32, 34, and 

34A. A graph 

of the spectral  transmittance of Wratten filters used i n  the program is 

shown i n  Fig. 9. 

The f i l t e r  chosen a s  a r e su l t  of the  tests was f i l t e r  34. 
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S t i l l  Photography: 

After the i n i t i a l  sequence of t e s t s ,  attempts were made t o  improve color 

contrast by modifying the l ight ing system. 

photographic setup is  shown i n  Fig. lO.  The top l i g h t  was focused t o  

produce a smaller diameter beam; hence, a higher irradiance, within the 

spray volume t o  be photographed. Also, the  spray was simultaneously 

illuminated from an oblique front  angle by a second Xenon f lash  lamp and 

focusing lens. 

the spray. 

General Radio Stroboslave, type 1539-A. The e l ec t r i ca l  energy input per 

f lash  f o r  these lamps was about 0.4 joule with a 3-microsecond f lash  dura- 

t ion.  

was used f o r  top lighting. 

taneously by a t r igger  s ignal  supplied by the f lash  synchronization switch 

on the camera shutter.  

Multiple Light Source Apparatus 

A schematic of the  modified 

A t h i rd  Xenon lamp was used fo r  simultaneously back l ight ing 

The f lash  lamps used f o r  f ront  oblique and back l ight ing were 

A s  before, the EG&G FX-11 lamp and Model 501 Stroboscope power supply 

The three f l a sh  lamps were triggered simul- 

Tests were a l so  carried out with oblique front  l ight ing from the FX-11 f lash  

lamp focused t o  a 1-inch-diameter spot a t  the in jec tor  axis.  

back l ight ing was carr ied out with an MZ&G FX-3 spiral.lamp which i s  fur ther  

described i n  the following discussion of the setup used f o r  Fastax photo- 

graphy. 
the back l ight ing would be of low leve l  and not wash out any droplet color 

produced by the  front  l igh t .  

I n  t h i s  case, 

A neutral  density f i l t e r  was placed over t h i s  ( l a t t e r )  lamp so that 

Fastax Photography: Multiple Light Source Apparatus 

Figure 11 shows the photographic arrangement used f o r  Fastax photography. 

The backlight was provided by an EC&G FX-3 s p i r a l  lamp which was driven 

by a type 501 stroboscope power supply. The FX-3 w a s  used because it has 

a much longer life-time than the FX-11. Although the radiance i s  an order 

of magnitude less than the  FX-11, it i s  suf f ic ien t ly  high f o r  back l ighted 

photography. An FX-11 f l a sh  lamp driven by a second type 5 O l  stroboscope 

power supply was used al ternat ively i n  the front  oblique or top position. 

The motion pictures were obtained with a prismless Fastax camera, again 
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Ektachrome EF f i l m  w a s  used t o  image the spray. 

synchronized with the camera t o  f lash  once each time the  fi lm advanced 

one frame. 

The stroboscope was 

Throughout the t e s t  program the l ight ing technique used was varied t o  

attempt t o  bring out propellant droplet color i n  the movies. 

only back l ight ing w a s  employed and no attempt was made t o  bring out pro- 

pellant color. In  l a t e r  e f for t s ,  propellant color contrast was enhanced 

with the use of front o r  top l ighting. 

screen was placed over the FX-3 f lash  lamp t o  provide more uniform dis- 

t r ibut ion of back l ighting. N o  f i l t e r  w a s  required t o  eliminate the  
f l a m e  because ac tua l  exposure t o  microflash w a s  nominally two microseconds. 

In i t i a l ly ,  

A ground glass l i gh t  diffusion 

Overall Film Coverage. A two-sided prism Fastax camera with Ektachrome 

EF film was used separately t o  monitor the overal l  burning spray from a 

posit ion 30 degrees off axis and 15 f e e t  downstream of the  spray f ie ld .  

Magnification was about 1/100. In t h i s  case a l l  l ight ing was provided 

by the combustion f l a m e .  
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A tabulation of the hot f i r i n g  t e s t  data i s  presented i n  Table I1 . Tests 

1 through 8 were system and photographic checkout runs and yielded no usable 

data. 

ment angle (included) 0.173-inch o r i f i ce  unlike doublet injector .  

propellant temperatures were 50°F, and the propellant type was nitrogen 

tetroxide (NTO) and hydrazine (Hz) . Runs 22 through 33 were a l so  a t  

atmospheric pressure and the propellants were NTO/Hz; however, the  o r i f i ce  

sizes were 0.030, 0.072 and 0.173 inch ( a l l  had a 60 degree included impinge- 

ment angle). 

was evaluated. 

UDMH and CPF/Hz. 

was studied a t  elevated chamber pressure of -200 psia. For these t e s t s  

the propellant combination was NT0/50-50. 

(9 through 56) the contact t i m e  (D/V)f was between .4 and 4 x 10 

Lastly, using a 

r a t i o  and reduced contact time (.2 x 10 

propellant combination Cl?F/Hz a t  atmospheric pressure. 

Tests 9 through I 2  were run i n  open a i r  with the 45 degree impinge- 

The 

In tests 34 through 51  the e f fec t  of propellant combination 

The propellants were NT0/50-50 (50% Hz + 50% UDMH), IRFNA/ 

During tests 52 through 56 the e f f ec t  of chamber pressure 

In a l l  of the above experiments 
-4 sec. 

.026-inch o r i f i ce  element the e f fec ts  of dynamic pressure 
-4 sec) were evaluated using the 

A detailed description of these t e s t s  i s  contained i n  the following dis- 

cussion. For convenience, the presentation of the resu l t s  i s  grouped by 

propellant combination. 

A movie depicting the data obtained i n  the subject program is  available 

on a loan basis  from JPL. 
contained i n  Appendix A. 

more graphic presentation of the data than can be shown by single frame 

reproductions contained i n  t h i s  report. 

A description of the available fi lm record is  

It should be noted tha t  the film provides a 
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NITROGEN TETROXIDE/HYDRAZINE RESULTS 

Ekperiments with the 0.030-inch Orifice Pair 

Experiments w i t h  the  0.030-inch o r i f i ce  pa i r  consisted of s t i l l  photographs 

and Fastax photography tests a s  described i n  the following paragraphs. 

S t i l l  Photography Tests. 

t u re  (70 t o  80°F) propellants. This test  revealed that NTO flashing occurred. 

As a resul t ,  the NTO j e t  emerged from the o r i f i ce  tube as a two-phase mixture. 

To remedy this s i tuat ion,  both propellants were conditioned i n  i ce  baths t o  

reduce temperatures t o  approximately 40'F. 

well-collimated jets resulted. 

The first test  w a s  conducted with ambient tempera- 

This worked sa t i s f ac to r i ly  and 

After reducing propellant i n l e t  temperature and some variation of the ex- 

perimental photographic technique, good pictures were obtained i n  tests 2 

through 4. 
conducted over a range of D/V values from 0.3 x 10 

Propellant mixing was obtained during a l l  tests. This conclusion was 

reached by visual examination of the photographed spray fan (edge v i e w ) .  

These t e s t s  w i t h  the  0.030-inch-diameter o r i f i ce  pa i r  were 
-4 -4 t o  1.0 x 10 seconds. 

Photographs from each of the tests indicated the presence of a well-developed 

spray fan without any indication of s t r a t i f i ca t ion  o r  separation of propel- 

l a n t  species. 

non-reactive l iqu id  streams. 

Hydrazine and NTO veloci t ies  were 50 and 42 ft /sec,  respectively, and pro- 

pal lent  temperatures were approximately 40" F. 

vis ible .  In  t h i s  picture, the NTO is  injected from the bottom o r i f i ce  tube. 

Qualitatively t h i s  fan was the  same as would be expected with 

A typ ica l  photograph is  presented i n  Fig. 12. 

Rere droplets a r e  c lear ly  

Color photographic techniques were varied f o r  t e s t s  5 through 8, t o  improve 

the color contrast  between NTO and hydrazine liquids. 

l i g h t  source/mirror arrangement previously shown i n  Fig. 8 
Good photographs of the burning spray were obtained which showed the droplets 

c lear ly  si lhouetted against  the  back l igh t .  

propellant streams and droplets was not suff ic ient  t o  ident i fy  individual 

In i t i a l ly ,  the  single 

was employed. 

However, the  color contrast  of 



Pc = 13.7 psis 

To = 40°F 

TF = 50°F 

j4 = 1.0 

Figure E. Burning Spray from N 0 /N2H4 Impinging Doublet, 
0.030-Inch-Diameter grkfice Element, Edge View 
of Spray Fan from Injector Face to 4 Inches 
Downstream, Run 8 
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droplets a s  being e i the r  f u e l  or  oxidizer, as was desired. 

contrast  of t he  propellant streams was obtained from a multiple l i g h t  source 

(Fig. 11). 

spray fan. However, d i s t i n c t  color contrast  of individual droplets was 

s t i l l  not achieved. 

t h a t  the problem was t he  r e su l t  of an insuf f ic ien t  balance of top (o r  

f ront )  l igh t ing  t o  back l lghting. 

toward use of Fastax f i l m  coverage, fur ther  development of color contrast  

i n  the spray droplets was not conducted i n  the subject program. 

Improved color 

For t h i s  setup colors were discernible within the 

Comparison with the photographs of Ref. 13 indicated 

As a re su l t  of the  s h i f t  i n  emphasis 

Fastax Photography Tests. 

through 26 t o  provide a continuous record of the  element spray character- 

i s t i c s  f o r  t h e  0.030-inch o r i f i c e  pair. 

spray f i e l d  affords  information on t rans ien t  spray f i e l d  disturbances 

which might otherwise be missed by individual s t i l l  photographs. 

tests, were prompted by r e su l t s  ( l a t e r  discussed) obtained with large 

elements using Fastax photography. 

Fastax film coverage was employed i n  tests 24 

Continuous observation of the  

These 

T e s t  r e su l t s  using the  0.030-inch-diameter o r i f i ce s  were not completely 

def ini t ive,  because good steady-state flow conditions were not achieved 

during the  test  ser ies .  

resul ted i n  p a r t i a l  f l a sh  vaporization of t he  precooled oxidizer i n  the  

in jec tor  hardware. However, steady-state flow was obtained fo r  a period 

of approximately 300 milliseconds, a t  the end of the  1.5-second t e s t  firings. 

During t h i s  l imited duration of steady-state operation, the in jec tor  

Marginal cooling of the  in jec tor  element housing 

operated i n  t h e  "mixing" combustion regime. 

separation were noted. 

No occurrences of stream 

Experiments With the 0.173-Inch-Diameter Orifice Pair 

Experiments with the 0.173-inch o r i f i c e  pa i r  consisted of s t i l l  photographs 

and Fastax photography t e s t s  as described i n  the following paragraphs. 
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S t i l l  Photography Tests. 

0.173-inch-diameter o r i f i c e  pair using s t i l l  photography. 

angle f o r  these t e s t s  w a s  45 degrees. 

D/V, were maintained nominally constant f o r  a l l  tests. 

the tests were the observation of (1) violent  stream separation on one test, 

( 2 )  a bright f l a sh  which over-illuminates the e n t i r e  photograph on another 

t e s t ,  and (3)  j e t  impingement t o  form a spray fan, on the th i rd  test. The 

d i f fe ren t  appearance of t he  propellant spray f ie ld  i n  each of t h e  three  tests 

suggested d i f fe ren t  stages i n  a time dependent process. These photographs 

were the first indicat ion t h a t  blowapart involved a periodic contact of 

propellant streams followed by a spray f i e l d  disturbance resul t ing i n  

violent stream separation. A s  a r e su l t  of these s t i l l  photo observations, 

the  use of high-speed Fastax photography was selected f o r  fur ther  study of 

the blowapart phenomenon. 

Tests 9 through I 2  were conducted with the 

The impingement 

The operating conditions, including 

Primary r e su l t s  of 

Fastax Photography Tests. Two d i f fe r ing  impingement angle 0.173-inch 

in jec tor  elements' were evaluated using Fastax photographic coverage. 

Runs 1-3 through 21  were w i t h  a 45-degree impingement angle injector ,  

while a 60 degree impingement angle was employed f o r  runs 27 through 33. 
I n  the  first tests conducted with the 45-degree impingement angle o r i f i c e  

pair, fan edge views* were obtained from the  in jec tor  t o  about 4-inches 

downstream. A cyclic-type propellant blowapart phenomenon w a s  observed 

on a l l  three tests. 
possibly detonations o r  explosive deflagrations, occurring approximately 

5 t o  10 milliseconds apart ,  although the frequency was i r regular .  There 

w a s  no warning i n  the pr ior  frames t h a t  the disturbances were about t o  

occur. 

and the propellant streams a re  violent ly  separated. Subsequently, the  

propellant streams reimpinge, forming a spray fan, and 

The propellant blowapart was characterized by flashes, 

Following each detonation, most of the  propellant is  consumed 

*"Edge views" are obtained from a d i rec t ion  perpendicular t o  the plane 
containing the two impinging j e t s  and show the narrow dimension of the 
spray fan. 
show the broad s ide  of the fan. 

Fan views are oriented 90 degrees from the  edge view and 
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the  process is  repeated. A typ ica l  sequence of the blowapart process i s  

shown i n  Fig. 13 . (Note that t h i s  f igure and several  following figures 

require two pages t o  show a complete sequence of events.) 

To define the three-dimensional spray f ie ld  behavior during incidence of 

blowapart, photography of "fan" views of the propellant spray a t  both up- 

stream ( in jec tor  face t o  4 inches) and downstream (2  t o  6 inches from 

injector  face) locations were obtained, as well as additional edge views 

a t  the downstream location. 

Figure 14 shows a fan v i e w  of the same process shown i n  Fig. 10. Note the 

semicircular rings of concentrated spray i n  the first photograph. 

is  qual i ta t ively the same as  would be expected of nonreactive l iquid streams. 

Proceeding t o  the  downstream v i e w s ,  Fig. 15 (edge v i e w )  and Fig.16 (fan 

view), additional information i s  obtained which shows spray can ac tua l ly  

be seen t o  be blown downstream by the "disturbance" pr ior  t o  i t s  gas i f i -  

cation. Referring back t o  Fig. 10 one notes tha t  spray i s  a l so  blown 

against  the injector ;  i n  other words, it appears t o  be blown i n  both 

directions from an apparent source somewhat downstream of the j e t  i m -  
pingement location. 

f i ne  m i s t  of shattered droplets, ligaments, e tc .  Gasification of t h i s  

m i s t i s  rapid*. 

and subsequently moves downstream alongside the new spray fan formed when 

the "blown apart" jets reimpinge. I n  between periods where blowapart took 

place, large numbers of d i s t i nc t  droplets could be seen i n  the region from 

2 t o  6 inches downstream of the injector.  

This was accomplished i n  tests 16 through 21. 

This 

The spray so affected appears t o  consist of a very 

Some re la t ive ly  coarse spray near the injector  persists 

I n  addition t o  the  45-degree impingement angle element a 60-degree 0.173- 
inch element was also studied. 

Fastax movies were taken of the impingement/combustion process. 

t i on  of the propellant feed system f o r  these tests was accomplished t o  

include cavitating venturies j u s t  upstream of the injector .  This w a s  done 

During tests 27 through 33, edge view 

Modifica- 

*Although vaporization is  achieved, mixing of the  f u e l  and oxidizer 
vapors is probably quite incomplete. 



( a )  Time = 0 milliseconds 

Pc = 13.7 psia 

T = 40°F 
TF = 50°F 

(Edge of Spray Fan) 

0 

fd = 1.0 

( b )  Time = 1.5 milliseconds 
(Reactive Stream 
"Blowapart" ) 

Time = 2.2 mi , lli seconds 

Figure 13. Typical Sequence Showing Cyclic Behavior of NTO/Hydrazine Reactive 
Stream "Blowapart" with 0.173-Inch-Diameter ( 45" Impingement Angle) 
Unlike Impinging Stream Orifice Pair  Element, Edge View of Spray 
Fan from Injector  Face t o  4 Inches Downstream, Run 13 
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(a) Time = 3.0 milliseconds 

(e) Time = 3.7 milliseconds 
( Reimpingement ) 

(f) Time = 6.6 milliseconds 
(Formation of New 
Spray Fan) 

Figure 13. (Concluded) 



(a) Time = 0 milliseconds 
(Fan View of NTO/ 
qydrazine Spray Fan) 

Pc = 
13.7 psia 

To = 50" 

= 60" TF 
jd = 0.91 

(b) Time = 1.3 milliseconds 
(Reactive Stream 
Blowapart ) 

( C) Time = 2.2 milliseconds 
( Reimpingement ) 

Figure 14. Typical Sequence Showing Cyclic Behavior of NTO/Hydrazine Reactive 
Stream Blowapart with 0.173-Inch-Diameter (45" Impingement Angle) 
Unlike Impinging Stream Orifice Pair Element, Fan View of Spray 
Fan From Injector Face to 4 Inches Downstream, Run 20 
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(a) Time = 3.1 milliseconds 
(New Fan Begins t o  F O ~ )  

(e) Time = 3.9 mil-liseconds 

( f )  Time = 5.2 milliseconds 

Figure 14 (Concluded) 
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Injector is 2 Inches 
Beyond Right Border 
of Photograph 
(a) Time = 0 milliseconds 

(Edge of Spray Fan) 
Pc = 13.7 psis 
To = 50" 
T~ = 60" 
pI = 0.69 

Time = 0.34 millisecond 
(Condition Prior to 
Disturbance ) 

( c )  Time = 0.67 millisecond 
(Reactive Stream 
Blowapart) 

Figure 15. Typical Sequence Showing Cyclic Behavior of NTO/Hydrazine Reactive 
Stream Blowapart With 0.173-Inch-Diameter ( 45" Impingement Angle) 
Unlike Impinging Stream Orifice Pair Element, Edge View of Spray 
Fan From 2 to 6 Inches Downstream of Injector Face, Run 16 
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(a) T i m e  = 1.0 milliseconds 
(Spray Shattered by 
Disturbance) 

( e )  Time = 1.3 milliseconds 

(f) Time = 5.8 milliseconds 
(Spray From New Fan) 

Figure 15 (Concluded) 



f 

Injector Face 2 Inches 
to the Right of Photographs 

(a) Time = 0 milliseconds 
(Downstream Fan View 
of spray Fan) 
Pc = 13.7 psia 

T~ = 500~ 
TF = ~ O O F  

6 = 0.88 

Time = 1.8 milliseconds 
(Reactive Stream 
Blowapart) 

(c) Time = 4.0 milliseconds 

Figure l& Typical Sequence Showing Cyclic Behavior of IQTO/Hydrazine Reactive 
Stream Blowerpart With 0.173-Inch-Diameter (45" Impingement Angle) 
Unlike Impinging Stream Orifice Pair Element, Fan View of Spray 
Fan From 2 to 6 Inches Downstream of Injector Face, Run 19 
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. . . . . .  

( a )  Time = 5.3 milliseconds 
(New Spray Fan Appears ) 

(e) Time = 7.1 milliseconds 

(f) Time = 8.9 milliseconds 

Figure 16 (Concluded) 
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1 

t o  insure 

response t i m e  of the feed system,but only by the a b i l i t y  of the disturbance 

t o  disrupt the impingement/mixing processes. 

t ha t  the rate of popping measured would not be l imited by the 

A typical  sequence showing a disturbance i s  presented i n  Fig. 17.  
resu l t s  are very similar t o  those shown i n  Fig. 13 
pingement angle. However, while the magnitude of the  disturbance was 
similar, the  jets were not blown against the in jec tor  face. 

jets were "parted" and separation does occur a t  the impingement point. 

Flowrate measurements show tha t  the flowrate was constant during the en t i r e  

t e s t ,  It should be noted that  i n  the pr ior  tests records show that the flow 

was temporarily interrupted when the disturbance occurred. 

These 

f o r  the 45 degree i m -  

As shown the 

The sporadic disturbances causing temporary separation of the N204/N2H4 

l iquid streams appear t o  originate i n  the  l iquid phase ju s t  downstream 

of the je t  centerline impingement point. The violence of these disturb- 

ances can be a t t e s t ed  t o  by shattered plexiglass plates  and frequently 

dislodged camera equipment. 

Streak film records of these disturbances place the point of or igin about 

0.01-inch downstream ( j e t  centerline) impingement. The disturbance pro- 

pagates a t  an average speed (approximately equal i n  both the upstream and 

downstream directions) of 5150 ft/sec. 

Experiments With the  0.072-Inch-Diameter Orifice Pair  

Experiments with the 0.072-inch o r i f i ce  pair (tests 22 and 23) consisted 

of Fastax photography tests a s  described i n  the  following paragraphs. 

Fastax Photography Tests. 

apart  was also found with the 0.072-inch o r i f i ce  diameter injector.  

sequence of events shown i n  t h i s  f igure portray an event analogous t o  

tha t  seen v i t h  the large element. 

be termed a "weak blowapart" as  i l l u s t r a t e d  i n  Fig. 19. 
qualitatively,  i n  t h a t  a segment of the  spray fan i s  obl i terated by the 

As seen i n  Fig. 18, obtained from run 22, blow- 

The 

More prevalent, however, was w h a t  may 

This d i f f e r s  



)/pxiaiz e r  

Time = 

- 
pL - 
To - 

Tf - 
$ =  

- 
- 

o m sec (de 
fan) 

13.7 psia 

40°F 

40°F 

1.1 

Time = 2.3 
(stream 

of 

m sec 
B~OWII apa r t )  

Time = 6.2 m sec 
(stream reattaching) 

Figure 17. Typical Sequence Showing Cyclic Behavior of NTO/Hz Reactive 
Stream Blowapart with 0.173-inch (60" Impingement Angle) Diameter 
Unlike Impinging Stream Orifice Pair Element (Run 30) 
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(Edge V i e w  of 
of Spray Fan) 

. seconds 
Format3 .on 

id izer  

= 13.7 psia 

To = 50'F 

TF = 40'2' 

jd = 0.85 

(b) Time = 0.19 milliseconds 
(Disturbance Occurs) 

( c )  Time = 0 -37 milliseconds 
(Streams Blown A p a r t )  

Figure 18. Typical Sequence Showing Cyclic Behavior of NTO/Hydrazine Reactive 
Stream Blowapart With 0.072-Inch-Diameter (60" Impingement Angle) 
Unlike Impinging Stream Orifice Pair Element, Edge View of Spray 
Fan From Injector  Face t o  4 Inches Downstream, Run 22 
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(a) Time = 0.73 milliseconds 
(spray is Consumed) 

( e )  Time = 2.0 milliseconds 
(Reformation of Spray 
Fan 1 

( f) Time = 3.4 milliseconds 

Figure U3 (Concluded) 
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? h e 1  

( a )  Time = 0 milliseconds 
(Edge V i e w  of Spray 
Fan) 

Oxidizer 

Pc = 13.7 psia 

To = 50°F 

TF = 40°F 

jd = 0.85 

(b) Time = 0.19 milliseconds 
(Disturbance Appears) 

( c )  Time = 0.39 milliseconds 
( Disturbance Grows ) 

Figuke 19. Typical Sequence Showing Cyclic Behavior of NTO/Hydrazine Reactive 
Stream Weak Blowapart With 0.072-Inch-Diameter ( 60" Impingement 
Angle) Unlike Impinging Stream Orifice Pair  Element, Edge V i e w  
of Spray Fan From Injector  Face t o  4 Inches Downstream, Run 22 
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(a) Time = 0.78 milliseconds 
(Portion of Spray Fan 
is Consumed by the 
Disturbance) 

(e) Time = 1.8 milliseconds 

( f') Time = 3.1  milliseconds 
(Gap in Spray Field 
Moves Downstream) 

Figure 19 (Concluded) 



disturbance rather  than the  en t i re  spray f ie ld .  

were a l so  seen. 
ferent t o  be classed as d i s t inc t  disturbance types*. 

t o  be a continuous t rans i t ion  from one type t o  the other, although the mech- 

anisms must be presumed t o  be closely related. 

Occasional small rrpUffsll 

These three types of disturbances a re  suf f ic ien t ly  d i f -  

There does not appear 

The net e f fec t  of decreasing in jec tor  o r i f i ce  diameter (from 0.173 t o  0,072 

inch) a t  constant inject ion velocity appears t o  be tha t  the number of ( w e a k )  

Class B disturbances great ly  increases a t  the expense of the (strong) Class A 

blowapart. 

of Results. 

These changes w i l l  be discussed i n  some d e t a i l  i n  the  Discussion 

Decreasing the contact time (D/V) from approximately 1.2 t o  0.95 sec fur ther  

reduced the incidence of blowapart ( a l l  classes).  

of t h i s  tes t  condition (run 2 3 )  because the physical phenomena qual i ta t ively 

were s i m i l a r  t o  those presented i n  Fig.18 

No photographs a re  shown 

and 19. 

*For convenience i n  subsequent discussion, the disturbance types will 
be referred t o  a s  A, By and C i n  order of decreasing magnitude. 

i 
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NITROGEN TETROXIDE (NT0)/505 HYDRAZINE + 

Experiments conducted with the  propellant combination NT0/50-50 u t i l i z e d  

the  60-degree impingement angle 0.173-inch-orifice element. A cavitating 

venturi w a s  used upstream of the  element and the  propellants w e r e  ch i l led  

t o  insure that f lashing would not occur upon inject ion.  Experiments were 

conducted a t  constant contact time ( i .e., element flow conditions constant) 

a t  both atmospheric pressure and a t  an elevated pressure of 200 psia. High 

speed Fastax movies were taken during these tests. 

50% UDMH (50-50) RESULTS 

Atmospheric Pressure 

Three NT0/50-50 tests were conducted using the  Fastax camera with strobe 

back l ighting. 

mounted qn e i t h e r  s ide of the combustion zone t o  protect the  camera equip- 

ment. 
d i s tor t ion  and lack of d e t a i l  i n  the coverage. 

setups were t r i e d  with s i m i l a r  resul ts ,  therefore, the  m e x  glass p la t e  

w a s  removed from i n  f ront  of the  camera i n  a l l  succeeding tests. 

In  the first test  (41) two sheets of Pyrex glass  were 

Splash-back on the glass  p la te  i n  f ront  of the camera caused some 

I n  tests 42 and 43 various 

The general observations from the  atmospheric pressure movies i s  t h a t  the  

incidence of strong (Class A)  blowapart i s  much less than that which occurred 

with the  0.173-inch element using FITO/Hz propellants. 

cant number of C l a s s  B type blowapart disturbances and some Class C weak 

blowaparts. 

a t  atmospheric pressure i s  presented i n  Fig. 20. 

separated a t  the  impingement point and a l l  of the propellants downstream 

are consumed. 

There were a signifi- 

A typ ica l  sequence of photographs showing a Class A blowapart 

Note tha t  the  jets a re  

Shown i n  Fig. 21 i s  an example of a type B blowapart which occurred a t  
atmospheric pressure wherein the  disturbance causes a "puff" o r  pulsation 

i n  the  impingement/mixing process. 

those of the 0.072-inch diameter element using NTO/Hz propellants. 

These r e su l t s  are qui te  similar t o  



Time = 
- 

pL - 
To - 
Tf - 
d =  

- 
- 

0 m sec (edge view 
spray fan) 13.7 psia 

40°F 

5 0 0 ~  

1.0 

Time = 3.8 m sec 
(stream blown a 

e i d i z e r  

Time = 7.7 
( stream 

m sec 
reattaching ) 

of 

'pa 

Figure 20. Typical Sequence Showing Cyclic Behavior of NT0/50-50 (Class A 
Blowapart) Reactive Stream Blowapart with 0.173-inch (60" Impinging 
Behavior) Diameter Unlike Stream O r i f  ice Pair  Element (Run 45) 
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Time = 
- 

pc - 
To - 

Tf - 
p l =  

- 
- 

0 m sec (edge view of 

13.7 psia 

40°F 

spray fan)  

5 0 0 ~  

1.0 

Time = 5.4 m sec 
, ( disturbance) 
x 

Oxidizer 

Fuel 

T ime  = 11.5 m 
(spray fan I 

sec 
.ef 01 , t ion)  

Figure 2 1  . Typical Sequence Showing Cyclic Behavior of NT0/50-50 Class B 
Reactive Stream Blowapart with 0.173-inch (60" Impingement Angle) 
Diameter Unlike Impinging Stream Orifice Pair Element (Run 45) 

54 



In  comparing the overa l l  atmospheric pressure r e su l t s  with those obtained 

with MTO/Hz it is  obvious tha t  the propellant combination had a s ignif icant  

influence on the type of blowapart which occurred. That is, f o r  the 0.173- 
inch IVTO/Hz experiments almost a l l  the explosions were strong ( C l a s s  A), 

while r e l a t ive ly  f e w  strong Class A blowaparts occurred f o r  the NT0/50-50 

propellants. 

had t h e  same e f f ec t  on t h e  levels  of blowapart s t rength a s  the  reduction 

i n  o r i f i c e  s i ze  had f o r  the  NTO/Hz propellants, s ince the  Class B and C 

explosions became predominant with NTO/Hz when the  o r i f i c e  s i z e  

t o  0.072 inch. 

1 

It a lso  appears t h a t  t he  change i n  propellant combination 

was reduced 

The motion pictures provided a good v i e w  of the downstream flow f i e ld ,  

including individual droplets. Backflow from the point of impingement 

was a l so  c lear ly  evident. Color d i s t inc t ion  could be made only a t  the  

edges of the flow f i e l d .  

able from the  darker l i qu id  droplets and f u e l  vapor. 

The reddish oxidizer vapor was eas i ly  distinguish- 

Elevated Chamber Pressure 

Experiments were a l so  run a t  elevated chamber pressure using the special  

chamber discussed under "Apparatus". A t o t a l  of f i v e  t e s t  f i r i n g s  (runs 

52 - 56) were conducted using the  0.1'73-inch-diameter unlike-doublet i n -  
j ec tor  and the N2O4/5O-50 propellant combination. 

test run conditions i s  contained i n  Table 11 . 
A tabulation of the 

In i t i a l ly ,  test 52 was conducted a s  a checkout f i r i n g  followed by tests 
53 - 56, which were run a t  approximately 230 psia chamber pressure with 

2 2 element dynamic pressure r a t io s  (p f  vf /Po v0 ) varying from 0.96 t o  1.5. 
Additionally, window purge pressure w a s  varied t o  evaluate purge effect ive-  

ness i n  reducing spray deposition on the v i e w  windows. 

Fastax film records show tha t  excessive N20k vapor obscured v i e w  of the  

spray throughout the duration of run 52. 

f o r  runs 53 - 56 was characterized by (1) visual  in i t ia l  in jec t ion  and 

combustion of the  spray, followed by (2)  a period (approximately 200 

The typical sequence of events 
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milliseconds) during which the  spray was completely obscured by combustion 

gases and vapors, and (3)  subsequent clearing of the gases and vapors t o  

provide a visual  record of the reacting spray impingement and combustion. 

Variable window purge pressures did not s ignif icant ly  change Visual c l a r i t y  

on successive runs. 
of the stream impingement zone on a l l  t e s t s .  

separation was s a t i s f a c t o r i l y  defined. Typical photographic r e su l t s  are 
presented i n  Fig. 22 . These f i l m  records show tha t  "stream separation" 

w a s  characterized by a "cyclic" blowapart which was i n  the  Class B and C 

range. No C l a s s  A type blowapart was observed. 

qui te  s i m i l a r  t o those  observed a t  atmospheric pressure. 

Some degree of N20k vapor recirculat ion reduced c l a r i t y  

However, the  mode of stream 

These r e su l t s  appear t o  be 

INHIBITED RED FUMING NITRIC ACID (IRFNA)/ 
UNSYMMETRICAL DIMFmryL HYDRAZINE (UDMH) RESULTS 

Experiments with IRI?NA/TJDMH w e r e  conducted with the 60 degree impingement 

angle 0,173-inch-orifice element. 
"open air" and t h e  dynamic pressure r a t i o  w a s  approximately 1.0. 

speed movies w e r e  taken of the impingement/mixing process. 

These experiments were conducted i n  

High 

For the  IRFT?A/UDMH propellant combination very weak Class C type blowapart 

predominated with some C l a s s  B type a l so  occurring. 

showing the disturbances are presented i n  Figures 23 and 24. 
results again show that a t  equal values of propellant operating conditions 

the  choice of propellant combination i s  extremely important, affect ing 

the  strength of blowapart which w i l l  occur. 

decreased i n  t h e  order I'?TO/Hz > NT0/50-50 > IRFNA/UDMH. 

Typical photographs 

These 

The magnitude of the  explosions 

CHLORINE! PENTAFLUORIDE (CPF)/ 
HYDRAZ3cmE (Hz) RESULTS 

Using CPF'/Hz prope lhn t s  , two variables were investigated (1) o r i f i c e  size,  
resul t ing i n  var ia t ion  i n  D/V, and (2) dynamic pressure rat io .  

was varied from 0.173 t o  0.026-inch and dynamic pressure r a t i o  was varied 

from 0.6 t o  1.6 (pf Vf /po V, ). 

Orifice s ize  

2 2 High speed movies were taken during these 

runs. 
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Figure 22. Typical Sequence Showing Cyclic Behavior of NT0/50-50 Class B/C 
Reactive Stream Blowapart with 0.173-inch (60" Impingement Angle) 
Diameter Unlike Impinging Stream Orifice Pair Element (Run 54 ) 
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Time = 0 m sec (spray 

= 13.7 psia pc 

Tf 
# = 1.1 

To = 35°F 
= 50"~ 

Time = 4.6 m 
( disturbanc 

-Oxidizer 

s ec 
:e) 

Time = 10 m sec 
(spray fan reformati 

fan) 

.on) 

Figure 23. Typical Sequence Showing Cyclic Behavior of IRFNA/UDMH (Class B) 
Reactive Stream Blowapart with 0.173-inch (600 Impingement Angle) 
Diameter Unlike Impinging Stream Orifice Fair Element (Run 54) 
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Time = 0 m sec (spray fan) 
P = 13.7 psia 

To = 35°F 
C 

T~ = 5 0 0 ~  
$4 = 1.1 

Time = 4.6 m sec 
( Disturbance ) 

Time = 6.9 m sec 
(spray fan Reformation) 

Figure 24. Typical Sequence Showing Cyclic Behavior of IRFNA/uDMB (Class C)  
Reactive Stream Blowapart with 0.173-inch (60" impingement angle) 
Diameter Unlike Impinging Stream Orifice Pair Element (Run 54) 



0.173-Inch-Diameter Orifice Tests 

The impingement process recorded f o r  CPF/N2H4 with the 0.173-inch-orifice 

doublet is  characterized by apparently continuous stream separation. 

dis t inct ion between the oxidizer and f u e l  sprays could not be made down- 

stream of impingement, it appears a s  though each je t  is  ref lected from the  

fan centerline as a separate spray a t  approximately the angle of incidence. 

As a resul t ,  the  region d i rec t ly  downstream of impingement i s  essent ia l ly  

void of propellant. 

Note tha t  only one picture is  presented due t o  the steady-state nature of 

the separation. 

Although 

This r e su l t  is  shown i n  the photograph shown i n  Fig.25. 

a’) 
J 

Special care w a s  taken during these tests t o  insure tha t  the CPF was 

suf f ic ien t ly  ch i l led  (-lO°F) so tha t  flashing would not occur a f t e r  

injection. Orifice AP and flowrate measurements substantiate tha t  no 

detectable 2-phasing of propellant occurred within the or i f ices ,  and 

temperature measurement ver i f ied the required low temperature propellant 

condition. 

These data represent the first def ini t ive record of continuous hypergolic 

propellant stream separation, 

0.026 - Inch-Diame ter O r i f  i ce Tests 

An attempt was made t o  evaluate the impingement/mixing process a t  much 

shorter  contact times by u t i l i z ing  a 0.026-inch-diameter element. 

design resulted i n  an approximate reduction i n  D/V of 6 .  In  addition, 

the e f fec t  of dynamic pressure r a t i o  a t  th i s  l o w  contact time was also 

studied . 

This 

Presented i n  Fig.26 

pressure rat ios ,  0.85, 1.29 and 1.62. 
the impingement point w a s  invarient w i t h  t i m e ,  

of 0.85 and 1.29 the streams separated a s  was the  case f o r  the 0.173-inch 

or i f ice .  

are the resu l t s  obtained a t  three different  dynamic 

In  a l l  cases the flow process a t  

A t  dynamic pressure ra t ios  
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(L/D) Orifice = 100 
= -10"F, TF = 40°F 

Dynamic Pressure - 1.0 

Do = Df = 0.173-inch 
Impingement Angle = 60" 

TO 

P = 13.7 psia 
C 

Oxidizer Spray 

Fuel Spray - 

(L/D) Orifice = 100 
TO = -10"F, TF = 40°F 
Dynamic Pressure - 1.0 

Do = Df = 0.173-inch 
Impingement Angle = 60" 

P = 13.7 psia 
C 

Oxidizer Spray 

Fuel Spray - 
Gas Phase Separation 

= 5.0 

Figure 2 5 .  Continuous Blowapart fo r  ClF /N2H4 with 0.173-inch Diameter 
Unlike Impinging Stream Orif2ce Pair  (Run 40) 
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:er 

= 1.62 

PI = 1-35 

$ = 0.80 

Figure 26 . Effect of Dynamic Pressure Ratio on Sepsrate/Mix for CPF/Hz 
Propellants U s i n g  a 0.026-inch Mameter Unlike Impinging 
Stream Orifice Fair Element 
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It appears from the photographs tha t  the streams a r e  indeed ref lected a t  
the impingement point with l i t t l e  or  no mixing. 

terms of a disturbance the  movies do show tha t  the streams w i l l  ac tual ly  

par t  a t  the impingement point momentarily then come closer and then repeat 

t h i s  process. 

within the impingement zone u n t i l  the forces cause a momentary escape of 

the gases. 

Although not cyclic i n  

This could be the  result of the gases building up pressure 

A t  a dynamic pressure r a t i o  of 1.62 the  jets appear t o  m i x .  
t h a t  the mixing is indeed caused by the  dynamics of the jets. These resu l t s  

c lear ly  demonstrate t ha t  both mixing and separation can occuq depending upon 

the in jec tor  design conditions. 

This suggests 

i 



DISCUSSION OF RESULTS 

The photographic r e su l t s  were analyzed i n  terms of the  r a t e  of explosion, o r  

"pops", and the  c l a s s i f i ca t ion  of the magnitude of the disturbances. 

r a t e  measurements w i t h  the several  propellant combinations used i n  t h i s  

program were then compared a t  equivalent operating conditions. 

s t reak measurements taken during several  tests with NTO/Hz were analyzed t o  

determine the speed and i n i t i a t i o n  point of the  disturbance. 

objective of this study was not a detailed determination of t he  l i m i t s  of blow- 

apart ,  the  r e su l t s  did y ie ld  some information on the  e f f ec t s  of several  

operating parameters on the  magnitude and rate of popping. These r e su l t s  

a r e  discussed and compared. Unfortunately the  scope of the  program does 

not allow a thorough comparison of these resu l t s  w i t h  o ther  data which w a s  

generated before and during t h i s  study by other investigators,  o r  a de ta i led  

analysis including a blowapart model. An attempt is  made t o  discuss several  

of the more per t inent  s tudies  and make overal l  comparisons of t h e i r  r e su l t s  

w i t h  those obtained during t h i s  program. 

These 

I n  addition, 

While the  

DESCRIPTION OF CYCLIC BLOWAPART PHENOMENA 
A s  observed with the system NTO/hydrazine st 40 t o  ~ o O F ,  injected from 

unlike-doublet elements with equal diameter (0.173-inch) or i f ices ,  blowapart 

involved the following typica l  sequence of events. 

1. Formation of a spray fan similar i n  shape t o  t h a t  formed by non- 

react ive l iquids .  Downstream of the fan were abundant quant i t ies  

of propellant droplets. Close examination of the movies suggests 

t h a t  the spray fan may show some lamination w i t h  more f u e l  on the 

f u e l  j e t  side and vice versa. Nevertheless, during t h i s  period 

the propellants remain i n  contact and are "mixed", a t  least within 

the small dimension corresponding t o  the spray sheet thickness. 
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2. Apparent detonations or explosive deflagrations occur i n  which 

v i r tua l ly  the en t i r e  existing sprayfield is  gasified. The fuel 

and oxidizer j e t s  a re  l i t e r a l l y  blown apart  and back toward the 

injector  face. Following this,  separate clouds of fue l  and oxidizer 

spray droplets are seen which move downstream without mixing. 

3. The j e t s  gradually reform and again develop a spray fan. 

Similar, but weaker, disturbances a l so  occurred i n  which only portions of 

the spray fan were consumed by the explosion. 

became predominant f o r  NTO/Hz w i t h  smaller diameter or i f ices  (0.072 inches). 

These latter disturbances 

As observed with the NT0/50-50, or  IRFNA/IJDMH propellants, the cyclic blow- 

apart is  s i m i l a r  t o  t ha t  described f o r  the NTO/Hz propellants. However, fo r  

NT0/50-50 and IRFNA/uDMH propellants the typical  magnitude of the disturbance 

was much less. Very f e w  strong explosions occurred and the process was i n  

f a c t  very s i m i l a r  t o  t ha t  observed with NTO/Hz w i t h  the 0.072-inch o r i f i ce  

element. 

DESCRIPTION OF STEADY-STATE BLOWAPART 

Steady-state blowapart w a s  a l so  observed during t h i s  program when CPF/Hz 

were used as the propellants. For t h i s  case a s  the j e t s  approached each 

other, propellant gasif icat ion near the plane of intersect ion caused suf- 

f i c i en t  forces between the jets t o  diver t  the streams away from the i m -  

pingement point, 

impingement angle (included angle 60 degrees). 

resulted i n  no fur ther  mixing of the propellants and unmixed spray was 

observed t o  persist several  inches downstream of the impingement point. 

The angle of diversion is  approximately equal: t o  the 

The diversion of the jets 

PROPELLANT SPRAY OBSERVATIONS 

Nature of the Disturbance 

Throughout t h i s  report the  word "disturbance" has been used with regard t o  

the cyclic blowapart phenomena because of uncertainty regarding the detai led 

nature of the phenomenon which blows apart  the injected propellant streams 



o r  disrupts the  spray fan. For NTO/Hz with the intermediate s i ze  injector,  
* ", 
i spherically shaped bursts  of shattered propellant spray a re  character is t ical ly  

seen. These can be seen i n  successive frames, growing relat ively slowly. 

These may represent some type of explosive deflagration, although a t  t h i s  

point t h i s  i s  s t i l l  speculation. 

High speed s t reak movies were taken of the flow from the impingement point 

t o  approximately +inches downstream. The f i l m  w a s  orientated as  shown i n  

the  sketch below (Fig. 27 ) 

Fuel 

Oxidizer 

Area of V i e w  

Timing Marks 
1000 cyclas/sec 

T i m e  Increasing 

.$ 

Figure 27. Orientation of Film with Respect t o  Injector Fan 

The average film speed was 4200 frames/sec. An enlarged photograph of a 

typ ica l  disturbance pat tern is  shown i n  Fig. 28. Note tha t  the high veloc- 

i t y  waves, appear i n  pairs, noted i n  the f igure as " in i t i a l "  and "secondary" 

disturbances. 

secondary waves a re  separated i n  t i m e  by about 0.2 msec. 

time/distance character is t ics  recorded on t h i s  photograph shows that the  

i n i t i a l  disturbance originates j u s t  s l i gh t ly  downstream of the impingement 

point. 

slope shown i n  the photograph. 

is  traveling both upstream and downstream from the point of in i t ia t ion .  

This or igin of the i n i t i a l  disturbance is about 0.01-inch downstream of the 

jet  impingement point. 

Two such pa i rs  a r e  seen i n  the photograph. The i n i t i a l  and 

Reduction of the 

The location of i n i t i a l  disturbance i s  determined by the  minimum 

There is  a minimum because the disturbance 

Analysis from other disturbances a l so  recorded on 

f 



Init ial  Disturbance 

Secondary Disturbance 

I, Spray Field 

(a) S'IXUUK PHOTOGRAPH 

Distance Disturbance 
Travels in ATime 

i s  Initiated 
Initiation Point of 
Second Disturbance 

I I  - Time Increasing 

(b) SCHEMATIC OF FILM 

v =kD 
AT 

Figure 28. 

where k = Calibration of film 
(in. .of flow fielci/in. of film) 

D = Film distance 

AT = Time 

Section of Streak Photograph Showing 
Disturbances and Description of Events. 
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f t h i s  film shows tha t  the or igin of the i n i t i a l  disturbance varies from 0.01 t o  

0.1-inch downstream fro= the j e t  centerline impingement point. 

speed was calculated t o  be 5150 ft/sec. 

a r e  generally explosive deflagration waves. Velocities several times 

t h a t  of sonic speeds usually r e su l t  from detonations. 

The wave 

Disturbances of t h i s  velocity 

The or igin 

inches downstream of the impingement point. The location and time of 

i n i t i a t i o n  requires tha t  the downstream explosion cannot be caused by the 

i n i t i a l  wave. 

the injector  face does intersect  the second disturbance a t  or  near the point 

of i t s  in i t ia t ion .  The f a c t  t ha t  there are always two separate disturbances 

occurring together suggests t ha t  the  second disturbance i s  not random but 

i s  inextricably t i e d  t o  the  in i t ia l  disturbance. 

of the second disturbance varied from about 0.4-inch t o  2.7- 

However, the resu l t s  do suggest t ha t  the reflected wave from 

Streak photographs were attempted with the other propellants; however, the 

disturbances did not provide suff ic ient  l i g h t  f o r  exposure of the f i l m .  

No other method was attempted t o  obtain the speed of t he  Class B or  C 

disturbances. 

b 
4’ 

Presence of Spray Droplets 

A secondary goal i n  the  program was t o  determine the  presence or  absence 

of propellant droplets i n  the downstream combustion zone of the 0.173-inch 

o r i f i ce  doublet. Previous holography experiments ( R e f .  15  ) with the ident ica l  

in jec tor  had showed an absence of droplet dispersions i n  the zone 12-inches 

downstream of the injector.  

l e f t  an uncertainty as t o  whether the lack of droplet dispersion d e t a i l  i n  

the downstream region was caused by l imited resolution of the holograms or  

simply the nonexistance of l iquid drops a t  t h i s  distance from the in jec tor  

face. 

Results of the  holography experiments ( R e f .  15 ) 

The ident ica l  in jec tor  was used i n  both programs with similar operat- 

ing conditions. Because the  downstream f i e l d  of view i n  the present program 

extended only t o  6 inches from the injector  face, d i rec t  comparison with the 
! 
j 
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12-inch downstream view (Ref. 15 )  cannot be made. 

taken i n  the  subject e f fo r t  and holograph reproductions reported i n  Ref. 1 5  show 

a great deal of s imi l a r i t y  i n  the  spray f i e l d  view extending 6 inches downstream 

of the  in jec tor .  O f  par t icu lar  significance i s  the  correspondence between spray 
f i e l d  disturbances noted i n  both investigations. S t i l l  photographs from Ref. 15 
show instances where i n  one case the spray f i e l d  is  uniformily dis t r ibuted and 

i n  another case the spray f i e l d  i s  separated i n t o  two d i s t inc t  regions. Such 

spray f i e l d  behavior was observed i n  the  subject investigation ( l 3 A  and l3D). 
It i s  possible t h a t  the spray f i e l d  d iss imi la r i t i es  noted i n  s t i l l  photographs 

from the Ref. 1 5  investigation were random exposures of t he  cycl ic  blowapart 

phenomena characterized by motion picture  coverage i n  the subject e f fo r t .  

However, the  photographs 

-4 Because the  holograph experiments were conducted i n  a D/V range of 1 t o  2 x 10 
sec. these t e s t s  would be expected t o  r e su l t  in mopel lant  blowapart (Fig. 13). 
I f ,  i n  f a c t ,  blowapart did occur i n  holograph experiments (Ref. 15 )  it would be 
expected t o  re ta rd  t h e  establishment of a spray f i e l d  a t  downstream locations 

(i.e.,  without repeated disruption of the  spray f i e l d  by blowapart, the  droplet  

spray dispersion observed a t  6 inches downstream might w e l l  pe r s i s t  a t  distances 

12 inches downstream of the  in jec tor ) .  
of droplets i n  the  downstream holographs (12 inches from in jec tor )  may h v e  been 

due i n  par t  t o  upstream spray obl i te ra t ion  resu l t ing  from blowapart. 

From these considerations, the absence 

Color Photograph 
Early i n  the  program, attempts were made t o  bring out d i f f e r e n t i a l  color i n  t h e  
f u e l  and oxidizer spray droplets formed by the  0.030-inch 

NM/Hz. These attemps were not successf i l  and the colors 

those of Ref. 13. This is  a t t r ibu ted  t o  a combination of 

and insuf f ic ien t  t op  l ight ing.  No l i g h t  source as  strong 
used f o r  t op  l igh t ing  i n  the referenced investigation was 

inject ion element with 

obtained did not approach 

too  much back l i g h t  

as  t he  microflash uni t  
available u n t i l  v i r tu-  

a l l y  the end of the  program. 
coverage and no fur ther  serious attempt w a s  made t o  obtain distinguishable colors. 

I n  the  meanwhile, emphasis was sh i f ted  t o  Fastax 

EFFECT OF PROPELLANT CCMBINATION ON BLOWAPART 

Experiments were conducted a t  near ident ica l  flow conditions ( pfVf / pOVo =loo> 
using the following propellant combinations: 

2 2 

1. NTO/Hz 3. IRFWA/UIIMR 
2. NT0/50-50 4. CPF/Hz 



As s t a t ed  i n  the Results Section of t h i s  report, impingement of NTO/Hz, 

NT0/50-50 and I€U?NA/UDMH j e t s  resul ted i n  cyclic blowapart ranging i n  
magnitude from violent (Class A) t o  ra ther  minor ( C l a s s  C )  disturbances. 

Impingement of CPF/Hz jets resul ted i n  steady-state separation. 

32 
49 
45 

I 37 

The frequencies of disturbances were determined from the films f o r  each pro- 

pel lant  combination. 

were determined as w e l l  a s  the overal l  disturbance rate. The resu l t s  are 

presented i n  Table I IL  

The type ( C l a s s  A, B or  C )  and number of disturbances 

TABLE I I L  SUMMARY OF DISTURBANCE RATE FOR 
SEVERAL PROPELLANT COMBINATIONS 

Test 
No.* 

Propellant 
Combination 

Dynamic 
Pres sure 
Ratio, 15 

(F/O) 

1.02 

1.1 

1.04 

1.00 1 2-7 I Continuous Stream Separation 1 
*All tests were conducted a t  13.7 psia pressure. The o r i f i c e  diameters were 
0.173-inches and the impingement angle was 60 degrees. 

These r e su l t s  show that the  spec i f ic  rate of' pops by "class" changed drama- 

t i c a l l y  w i t h  propellant combination. It is  interest ing,  however, t o  note 

t h a t  t h e  overal l  rate of popping f o r  t he  first three propellants including 

a l l  disturbances w e r e  qui te  similar. CPF/Hz; however, resul ted i n  contin- 

uous blowapart a t  these operating conditions. 

The r e su l t s  obtained with mTO/Hz, NT0/50-50 and IRFNA/UDMH, and the  measured 

speed of the wave accompanying the  disturbance strongly suggests that an 

explosion is occurring near t he  i n i t i a l  contact point of the  jets. 

the s t reak measurements show that the in i t ia l  explosion occurs i n  less than one 

diameter from the theore t ica l  impingement point of t he  j e t  centers. 

In  fact, 

In  t h i s  

3 
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region the  propellants are being turbulently mixed and a re  s t i l l  acted upon by 

hydraulic pressure forces.  It therefore appears plausible t o  assume that 

the explosions a re  caused by igni t ion i n  the mixing region or  detonation of 

explosive intermediates. 

Propellant 

NTO/Hz 

NTO/ 50 - 50* 
NTO/UDMH* 

In  References 18 and l9,it has been established t h a t  f o r  NTO and Hz, 50-50r 
and tJDMH, various explosive n i t r a t e s  are formed. 

depends upon the fuel .  I n  the R e f .  18 study, shock sens i t i v i ty  experiments 

were conducted on various solution strengths of t he  nitrates t o  determine 

detonation strengths and sens i t iv i ty .  

reproduced i n  Table Iv  below. 

The specif ic  n i t r a t e  formed 

A t ab le  l i s t i n g  these r e su l t s  is 

Impact Sens i t iv i ty  TNT Equivalent 
N i t  r a t e  F t - lb  W t .  Percent 

HN 4 142 

mw 4( 12) ** 142 ( 106) 

W W )  119( 12 1 79( 106 1 

TABU IV, EXPLOSIVE CHARACTERISTICS OF NITRATES 

m o s e  may also have the  UDMH Nitrate (UN) 
**Numbers in parenthesis r e fe r  t o  UN 

These r e su l t s  suggest t h a t  the magnitude of the  detonations w i l l  be greatest  

for  Hz and l e a s t  with UDMH. This r e su l t  i s  of course consistent with those 

obtained during t h i s  program. Other mechanisms causing the observed 

disturbances are also poss ib le ;  fo r  example, rapid l iqu id  phase heat 

release could cause ignition explosions. 

I n  t h i s  case it is  conceivable that the propellants with the grea tes t  reac t i -  

v i t y  rate would r e su l t  i n  the least amount of mixing, since gas generation 

inh ib i t s  mixing, producing separation as observed f o r  t he  CPF/HZ propellants. 

Low reac t iv i ty  provides large amounts of l iqu id  phase mixing and a s  a r e su l t  

igni t ion explosions. The greater  the amount of mixed propellant t he  greater  

the  force of the explosion. 



The study by Rodriguez (Ref. 20 ) suggests t h a t  MTO/Hz i s  re la t ive ly  less 

reactive than NTO/UDMH. Based on t h i s  observation and the above argument, 

i t  would be expected that a greater  degree of l iqu id  phase mixing would 

r e su l t  with the NTO/Hz propellant combination than with NT0/50-50 o r  UDMR, 
and therefore NTO/Hz would produce the  greatest  explosions. 

s i s t e n t  with the r e su l t s  of t h i s  study. 
This i s  a l so  con- 

A detai led model formulation of e i the r  mechanism would be diff icul t ,but  

cer ta inly qui te  possible. Evaluation of the models would however, require 

some studies of the impingement/mixing process i n  the v i c in i ty  of t he  

impingement point. 

EFFECTS OF OPERATING CONDITIONS 

Variation of Orifice Size 

Some limited parametric investigation was conducted employing NTO/Hz pro- 

pel lants  t o  determine the  e f f ec t  of o r i f i ce  s i z e  on blowapart. 

study three d i f fe ren t  o r i f i c e  sizes were used, 0.030, 0,072 and 0.173-inch 

diameter. 

apar t  were observed. Cyclic blowapart occurred, f o r  t he  large o r i f i c e  

(0.173 inch) injector ,  every 5 t o  10 milliseconds, although the  frequency 

w a s  i r regular .  me diaturbances for  t h i s  elemefit s ide  were Class A 

i n  magnitude. 

For t h i s  

Signif icant  var ia t ion i n  the character and frequency of blow- 

With the intermediate s i ze  in jec tor  element (o r i f i ce  diameter 

0.072 inch) a t  approximately the  same inject ion ve loc i t ies  as used with the  

large element, the overal l  incidence of explosive disturbances was reduced. 

I n  addition the  disturbances were approximately equally divided between 

Class A, B, and C blowapart. 

there  was no evidence t h a t  any blowapart occurred, 

with s t i l l  photographs, however. In  the one test  where Fastax photographs 

were obtained with t h i s  injector ,  only about 300 milliseconds of apparent 

mainstage data was acquired. This showed no blowapart. 

For the  smallest (0.030 inch) o r i f i c e  element 

Most of t h i s  data w a s  

. .' 

The film records f o r  these runs w e r e  reduced t o  determine the  rates of pops 

i n  a l l  c lasses  and the  overa l l  pop rate.  The r e su l t s  are presented i n  Table V, 
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‘E 

I 

Orifice 
Size 
( in .  1 
0.030 

0.072 
0.072 
0,173 

- 

Since the contact time defined by (D/V) a l so  varies as the diameter i s  changed, 

several other tests a t  differ ing contact t i m e  f o r  the same diameter a r e  a l so  

l i s t e d  i n  the Table. As shown i n  Ref. 16 pop r a t e  cannot be correlated with 

D/V independent of diameter. Consequently the resu l t s  are not plot ted since 

suf f ic ien t  data were not taken t o  define the functional relationship. 

r ison of these resu l t s  (Table v ) with Ref. 16 shows reasonable agreement. 

It should be noted tha t  i n  the R e f .  16 study the pop r a t e  was determined from 

Compa- 

vF (D/VIf Blowapart Frequency Pops/sec 
-4 10 sec Class A class  B Class c Overall f t / sec  

fi 

1.0 0.45 0 0 0 0 56 
0.85 1.2 35 45 26 106 50 

0.94 0.95 5 1.5 0 20 63 
1.0 2 -9 122 0 0 122 50 

- 

pressure t races  and may not include a l l  of the disturbances (Class B and C ) .  

These low order disturbances probably do not have suf f ic ien t  strength by the  

t i m e  they have traveled t o  the measurement location t o  be distinguishable. 

It is  obvious from the resu l t s  l i s t e d  i n  Table V t ha t  the overal l  pop r a t e  

as  well a s  the proportion of Class A, B, o r  C disturbances varies when or i -  

f i c e  diameter and/or contact t i m e  varies. 
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Consideration of the cyclic nature of the blowapart leads t o  the real izat ion 

tha t  the percentage of the time tha t  t h e  propellants form a normal spray fan, 

i.e., the "mixed" t i m e ,  varies continuously with the  operating conditions. 

Fig. 29, the  "percent mixed" time f o r  the series of tests is plotted schema- 

t i c a l l y  against  D/V. 
separation occurs. 

In  

Such plots  can provide a useful measure of "how much" 

I n  analyzing the  film records, the in te rva l  between each successive dis- 
turbance was a l s o  recorded. These data f o r  two test runs a re  presented i n  

Fig. 30 as  a function of the sequential event. This period fluctuated f o r  

both runs i n  apparently random fashion within a bandwidth of 3 t o  I 2  
milliseconds. 

Variation i n  Chamber Pressure 

Several experiments were conducted a t  a chamber pressure of about 200 psia. 

T h i s  was accomplished by enclosing the element within a chamber capable of 

being pressurized by ambient nitrogen gas flowing through the chamber noz- 

zle. In  this manner the element flowrate can be maintained constant and 

increases i n  chamber pressure are accomplished by variation of the GN f law-  

ra te .  

chamber pressure would r e su l t  i n  steady-state separation as predicted by 

the blowapart model of Ref. 14. 

during t h e  avhient pressure (13.7 ?sia) and e l e v e t d  pressure experiments 
are presented i n  Table V I .  

2 
The objective of the t e s t s  was t o  determine i f  increasing the 

Analysis of the pop rate obtained 

5 
... 

1 , 
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TABLE V I .  CYCLIC BLOWAPART RATES FOR NT0/50-50 
I N  A PRESSURIZED CHAMBER AND OPEN A I R  
TEST (Dam = 0.173 I N . )  

Pressure, 
psia  

55 

46 

225 

13.7 
I 

PR. Ratio ( 8 )  

0.99 

1.05 

Overall Blowapart Rate 
(Disturbances /Sec) 

D/V 

x sec 

2.7 

2.7 

("Overall blowapart rate includes Type B and Type C disturbances. 
No Type A disturbances observed. 

(2)Previous "Open A i r "  data. Overall blowapart rate includes Type A, 
Type B, and Type C disturbances but  with only one (A) type disturbance 
observed. 

A s  shown i n  the table ,  increasing the chamber pressure from 13.7 t o  225 

ps ia  had only a minor e f f ec t  on the r a t e  of disturbance increasing from 

112 pops/sec a t  13.7 p s i a  t o  124 pops/sec a t  225 psia. 

t ha t  increasing the chamber pressure t o  225 ps ia  did not product steady- 

s ta te  separation. It is  not  known whether fur ther  increases i n  chamber 

pressure would r e su l t  i n  stream separation caused by gas phase reactions,  

nor what occurs a t  intermediate pressures. 

These r e su l t s  show 
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Variations i n  Dynamic Pressure Ratio 

The impingement/mixing process near the impingement point should influence 

blowapart. The study of Ref.17 has shown tha t  popping i n  l iquid rocket 

engines using NT0/50-50 propellants i s  influenced by the stagnation dynamics 

of the inject ion impingement. Clayton's model assumes that two jets imping- 

ing a t  equal dynamic pressuresare inherently unstable and tha t  large varia- 

t ions i n  the impingement character is t ics  occur near pF VF /e Vo = 1.0. 2 2 

I n  R e f .  17 , it is  s ta ted  without proof tha t  depending upon the re la t ive  

dynamic pressures of the two streams several  differ ing flowfields w i l l  

r e su l t  downstream of impingement. 

of one,a double stagnation point w i l l  occur a t  the impingement point, and 

f o r  j e t  dynamic pressures which a re  unequal, the stream having the lower 

stagnation pressure w i l l  stagnate against the  other stream. 
representatives of those character is t ics  taken from Ref.17 are  reproduced 

below. 

For example, a t  a dynamic pressure r a t i o  

Schematic 

BACKFLOW 

POINT 

OXI9IZER 

STAGNATION "" / POINT 

\- 

\ 
Figure 31 . Schematic Representations of the Impingement Region fo r  

Unlike Impinging Free Liquid Jets (Ref. 1") 



The resu l t s  presented i n  Reference 17, show that ,  f o r  unlike 

impinging NT0/50-50 j e t s ,  a t  a uni ty  dynamic pressure r a t i o  the highest 

ra te  of pops occurs and t h a t  the rate of pops decreases as 15 1.0 ( a t  

constant temperature). This study was conducted a t  100 psia  chamber pressure. 

The determination of the e f fec t  of dynamic pressure r a t i o  independently of 

other variables i s  extremely d i f f i cu l t  t o  ascertain.  This i s  due t o  dynamic 

pressure being dependent upon, contact t i m e ,  geometry, and mixing uniformity. 

For example, the dynamic pressure r a t i o  i s  related t o  contact time a s  shown 

i n  equation (1). 

Dynamic pressure is related t o  mixing uniformity by: 

N =  1 

i +  6 DF/D 0 

N = mixing uniformity c r i t e r i a  defined by Rupe. 

To maximize mixin@j N i s  equal t o  0.5. 
and consequently maximum mixing occurs a t  the ident ica l  point where dynamic 

pressure r a t i o  is  unity. It is, therefore, extremely d i f f i c u l t  t o  separate 

these variables. 

A t  t h i s  condition 6 is  equal t o  1.0 (if D =D ) F o  

During the experiments, variations i n  dynamic pressure r a t i o  were accomplished 

f o r  a l l  propellant combinations investigated. This var ia t ion w a s  not intended 

i n  a l l  cases but occurred due t o  s l i gh t  system pressure drop differences 



w i t h  each propellant combination. 

rates measured from the high speed movies a re  presented i n  Table VII. 

tha t  variations i n  dynamic pressure rat io ,  depending upon propellant combina- 

t ion,  ranged from about 0.8 t o  1.6. 
NT0/50-50 propellants a t  both ambient (13.7 psia) pressure and a t  about 

200 psia. 

pressure. 

steady-state processes, it i s  discussed separately. 

A l i s t  of the tests and the overal l  pop 

Note 

In  addition, tests were conducted with 

A l l  tests with the other propellants were conducted a t  13.7 psia 

Since, unlike the other propellant combination, CPF/Hz exhibited 

TABLE V I I .  EFFECT OF DYNAMIC PRESSURE 
RATIO ON BLOWAPART 

PC 
psia 

Overall Pop Rate 
Pop/sec Propellant 

~ 

NTO/ 50 - 50 
DJ = 0.173 

~~ ~ 

1.5 
1.1 

0 0995 
0.96 

235 
22 5 
22 5 
220 

2.2 

2.6 
2*7 
2.7 

197 
133 
124 
126 

NTO/Hz 
D = 0.173 9 

1.1 
0.9 
1.26 

13.7 2.8 
3 00 
2.6 

156 
100 
124 

~~ 

NTO/ 50-50 
D = 0.173 
j 
IRFNA/UDMH 
D = 0.173 J 

1.04 13.7 2.7 112 

1.1 

0.97 
13.7 2.1 

e .6 
168 
11-5 

CPF/Hz 
D = 0.173 3 

1.62 
0.805 
1.35 

13.7 0.24 
0.23 
0.18 

Continuous 
Blowapar-t 
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NTO/Hz, NT0/50-50  and IRFNA/UDMH Blowapart Characterist ics.  

obtained f o r  the above l i s t e d  propellant combinations are insuf f ic ien t  t o  

assess the e f f ec t  of dynamic pressure r a t i o  on blowapart. Although the 

r e su l t s  are qui te  l imited,  they do show, however, t h a t  dynamic pressure 

r a t i o  does influence the resu l t ing  pop rate. 

The r e su l t s  

CPF/Hz Blowapart Characteristics. 

interest ing i n  tha t  a s  was shown i n  the photographs of Fig, 26, continu- 

ous separation occurred a t  a dynamic pressure r a t i o  of 0.8 and 1.35 while 

a t  jd = 1.62 steady-state propellant mixing occurred. The exact value for  

jd where mixing first occurs i s  not known. 

The CPF/Hz resu l t s  a r e  extremely 

As mentioned above, variations i n  dynamic pressure r a t i o  cannot be made 

independently of contact t i m e .  
l isted i n  Table VII. 
pressure r a t i o  test was no longer than f o r  the other tests. 

i f  (D/V) 
would suggest t ha t  mixing could not have resulted because of differences 

i n  contact t i m e  (i.e., longer contact t i m e  should resu l t  i n  a greater  

propensity t o  separate the j e t s  because of gas phase reactions).  

The fue l  contact times f o r  each test a re  

Note that the contact t i m e  f o r  the 1.62 dynamic 

Consequently, 

i s  the appropriate character is t ic  contact time then these resu l t s  F 
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COSJCLUSIONS 

Prior  t o  this investigation, the prevalent v i e w  of reactive stream 

separation was t h a t  it w a s  a quasi-steady process. This is ref lected i n  

the  experimental approach used by essent ia l ly  a l l  previous experimenters, 

e.g,, s t i l l  photography. The same view is  evident a l so  i n  a l l  published 

attempts a t  ana ly t ica l  modeling. 

a break-through i n  investigation of reactive stream separation phenomena 

i n  t h a t  the cycl ic  nature of the blowapart process is  so c lear ly  i l l u s -  

t r a t e d  f o r  the propellants NTO/Hz, NTO/50-50, and IRFNA/UDMH. 

a continuous, o r  quasi-steady separation was observed with the propellants 

CPF/Hz. 

physical separation of fue l  and oxidizer spray. 

The data obtained i n  t h i s  program present 

In  addition, 

Both cycl ic  and steady-state blowapart can r e su l t  i n  s ignif icant  

Cyclic blowapart was not observed w i t h  CPF/Hz a t  a l l .  

with each of the  other three propellant combinations tested.  

menon may be described i n  general t o  resu l t  from repeated explosions which 

disrupt  the  spray fan and drive the jets apart ,  thereby producing temporary 

physical separation of f u e l  and oxidizer. 

normal spray fan  forms i n  which the propellants a r e  not separated. 

strength of the cyclic blowapart was variable ranging from cases where the 

explosion obl i terated the  e n t i r e  spray fan (Class A ) ,  o r  portions 

spray (class B), t o  meke '(puffs" ( CJASS C )  

It was encountered 

The pheno- 

In  between these explosions a 

The 

of the 

Among those propellants which produced cycl ic  blowapart, propellant combina- 

t i o n  was found t o  have a strong e f f ec t  on the  average blowapart strength. 

For example, a t  equivalent operating conditions (dynamic pressure r a t i o  

o r i f i c e  diameters = 0.173 inch) NTO/Hz, experienced almost exclusively the  

violent ( C l a s s  A) blowapart while NT0/50-50 and IRFNA/UDMH produced primarily 

Class B and C blowapart. 

was however, approximately constant. 

1.0, 

The aveaiage frequency 05 explosion of all types 
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Operating conditions influenced both the frequency and strength of cyclic 

blowapart. With NTO/Hz reduction of the o r i f i ce  diameter from 0.173 inch 

t o  0.072 inch reduced both the strength and frequency of the explosions. 

With 0.030-inch diameter or i f ices  no blowapart was seen under the  conditions 

tested. 

t i a l l y  reduced the occurrence of blowapart. 

pressure from 13.7 psia t o  about 200 psia with the  system NT0/50-50 had 

l i t t l e  e f fec t  on t h e  cyclic blowapart. Changes i n  dynamic pressure r a t i o  

over the l imited range tes ted  (0.9 t o  1.5) produced some variation i n  the 

number of explosions per uni t  time, but did not a l t e r  the character of 

blowapart. 

encountered with NTO/Hz, NT0/50-50, o r  IRFNA/UDMH. 

Increased inject ion velocity ( fo r  0.072-inch or i f ices )  substan- 

Increase of the operating 

Under no test  conditions w a s  a quasi-steady stream separation 

The resu l t s  w i t h  NTO/Hz, NT0/50-50, and IRFNA/UDMH indicate t h a t  a new and 

different  mechanism may be needed t o  explain the cyclic explosions which 

occur with the N204 type oxidizer. 

mediates (e.g., hydrazine n i t r a t e )  and igni t ion of pockets of pre-mixed 

l iquid propellants of fe r  possible explanations of cyclic blowapart. 

Both the existence of explosive in te r -  

With CF’F/Hz, a d i s t i nc t  continuous stream separation was found t o  ex is t  

and the forces generated by propellant reaction and gasif icat ion a t  the 

impingement region were suff ic ient  t o  cause the individual downstream 

propellant sprays t o  diverge by about 60 degrees. These resu l t s  were 

seen with both 0.173-inch and .02&inch o r i f i ce  injectors.  With the 

smaller o r i f i ce  sizes,  however, it was found possible t o  eliminate stream 

separation by increasing the dynamic pressure r a t i o  ( Pf Vr /Po Vo ) from 

near unity t o  1.62. 

2 2 

In l i gh t  of these resu l t s  it i s  quite possible tha t  the gas phase separation 

blowapart mechanisms suggested by Kushida and Houseman may apply t o  CPF/Hz. 

Physically the type of blowapart seen with these propellants conforms w i t h  

t ha t  envisioned on the basis of t ha t  model. Furthermore, the apparent in- 

creased tendency t o  separate a t  near uni ty  dynamic pressure r a t i o  i s  con- 

s i s t en t  with such a mechanism. 
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A final conclusion is  tha t  high-speed motion picture photography a s  applied 

i n  the subject program w i t h  appropriate back l ighting, top l ighting, and 

other photographic techniques is an extremely valuable method f o r  experi- 

mental investigation of blowapart. 
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RECOPIIMENDATIONS 

Ekperimental studies conducted during the subject program provided a more 

complete understanding regarding the manner i n  which the phenomena termed 

blowapart occurs. 

elucidate blowapart i s  strongly recommended. The following areas of in-  

vestigation a re  recommended f o r  near future e f f o r t )  

Continued use of t h i s  experimental technique t o  fur ther  

1. An e f f o r t  should be made t o  define the mechanisms causing 

cyclic blowapart. Results of the subject program showed tha t  

the interpretat ion of blowapart with hydrazine type fuels  

and N20h or  IRF'NA oxidizers a s  only a quasi-steady state 

phenomena i s  invalid. Therefore, a need ex is t s  t o  define 

and describe a new model f o r  blowapart. 

2.- Together with the def ini t ion of the cyc l ic  blowapart 

mechanisms, a concurrent e f fo r t  to describe 

the pertinent parametric e f fec ts  of t e s t  conditions on 
cyclic blowapart i n  a detailed manner should be undertaken. 

"he study should be broad enough t o  c lear ly  show the va l id i ty  

of any proposed blowapart model. 

3. Further experimental tests should be conducted wi th  CPF/Hz to  deter- 

mine the influence of operating pressure, temperature and dynamic 

pressure r a t i o  over a range of o r i f i ce  diameter t o  inject ion 

velocity r a t io s  (D/V) i n  order t o  more conclusively confirm 

the appl icabi l i ty  of the gas phase reaction mechanism of 

reactive stream separation proposed by Kushida and Houseman. 
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APPENDIX A 

FILM RECORD OF BLOWAPART PROCESS 

Selected fastax tests of the 0.173-inch o r i f i ce  in jec tor  f i r i ngs  were 

assembled i n  a f i l m  s t r i p  t o  provide a movie depicting the propellant 

blowapart process. 

t ions i s  a l so  presented i n  the  f i l m ,  

f i lm c l i p  i s  l i s t e d  below: 

A description of the test hardware and test  condi- 

Sequence of tests shown i n  the 

1. 

2. 

3. 

4. 

5. 

Overall view of spray f i e l d  viewed 30 degrees off axis  and 

1 5  f e e t  downstream of injector  shown pulsating flame l igh t  

(Run 9-25-13) 

Fan view of spray fan, view from in jec tor  face t o  4 inches 

downstream (Run 10-21-5, Fig. 10) 

Edge view of spray fan, view from injector  face t o  4 inc.hes 

downstream (Run 9-25-13, Fig. 9) 

Edge view of spray fan, view from 2 t o  6 inches downstream of 

in jec tor  face ( R u n  10-21-1, Fig. 11) 

Fan view of spray fan, view from 2 t o  6 inches downstream of 

in jec tor  face (Run 10-21-4, Fig, l2) 

I n  addition a f i l m  sequence showing the e f fec t  of propellant combination 

on blowapart f o r  the 0.173-inch-diameter element was assembled. 

The films may be obtained, on a loan basis, by contacting the Jet Propulsion 

Iaboratory, Pasadena, California, Attenkion of the Project Manager, J. H. Rupe. 
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